
BE188 Midterm, Winter 2019 

Question 1 (15 pts)

You decide to model your confidence in a medical procedure succeeding as a Beta distribution, where 
  for  . That is,   is the probability of a procedure succeeding, and   is the 
probability you have assigned to that particular   being true. So far, 10 procedures have succeeded, and none 
has failed, so   and  .  
a) Based on the properties of probability distributions, what is the scaling constant  ? What is p(x < 1/2)?

b) What is the mean of this distribution?

c)

d) What are three things (total) you can say about the sampling distributions of the mean for N=1 and N=5?

e) How could you test whether a set of points follow this distribution? (Very briefly describe.)


Question 2 (20 pts)

You are designing a medical device to provide measurements of blood oxygenation from skin spectroscopy 
measurements performed on the wrist. You know that the device provides a voltage that is proportional to 
blood oxygenation, but have to calibrate it for each patient to values measured separately. 

a) What method can you use to quickly determine this conversion factor from your calibration points?

b) Your team asks you to provide design a scheme whereby the device provides feedback as to whether new 

calibration are needed. How could you determine this from the calibration points you have 
( ) so far?


c) You have many calibration points (say N > 50), so you know that you can ignore variance in the model (i.e. 
if you ran bootstrapping, your β terms would have negligible variance). What can you say about where you 
would expect new calibration points to be distributed? How are the β terms distributed?


d) A team member insists that the voltage-oxygenation relationship is log-linear instead of linear, and so 
suggests transforming   to   instead. When would this be alright? What is an alternative approach? 
What are the concerns with either approach?


e) In version 1 of the device you used a single value as input, calculated from the ratio of two wavelengths 
outside of your model. In version 2 your team is interested in whether the full spectroscopy data (200 
wavelengths simultaneously) can be used for a more reliable measurement. You're allowed to require up to 
20 calibration points. Describe how you could calibrate your model. What assumptions are you making? 
How could you compare performance of version 2 to version 1?


Question 3 (15 pts)

A PSA test is a diagnostic test for prostate cancer with a sensitivity and specificity of roughly 75% and 50%, 
respectively. A completely healthy, asymptomatic man shows a positive test and is recommended for a 
biopsy. The incidence of prostate cancer in the general population is 1 per 1000 men.

a) Write out Bayes' law, and rewrite the equation for the probability of the man having a prostate tumor given 

his positive test.


p(x) = C1xα(1 − x)β 0 ≤ x ≤ 1 x p(x)
x

α = 10 β = 0
C1

[(V1, O1), (V2, O2), (V3, O3), …]

V log(V )



b) Sensitivity is true positives over all positives, while specificity is true negatives over all negatives. 
Therefore, the false positive rate is   and the false negative rate is  . How many 
false and true positives are expected in a cohort of 1000 tests?


c) Calculate the probability of the man having prostate cancer, given his positive test result.

d) What could we do to further ensure positive tests are giving us true results? (You can’t improve the test 

itself.)

e) A common form of prostate biopsy has a sensitivity and specificity of 50% and 90%, respectively. What 

the chance the biopsy is positive, given the information from above?


Question 4 (20 pts)

a) What is crossvalidation and what does it evaluate?

b) Outline the steps to performing crossvalidation.

c) How do predictions from crossvalidation necessarily differ from fitting a full model?

d) Why are multiple folds necessary?

e) What does bootstrapping pretend to do with your data?

f) Outline the steps for performing bootstrapping.


1 − specificity 1 − sensitivity



Question 5 (15 pts)

Heimberg et al, Cell Systems, 2016, proposed that even shallow or noisy sequencing, with very few mRNA 
reads from cells, can provide a reliable picture of sample variation in principal components space.


a) What are three benefits decomposition methods like PCA provide?

b) The dataset includes each cell type as a row (observation) and each gene as a column (variable). Is 

subfigure D a scores or loading plot?

c) A gene is exclusively expressed in neural tissues. Would it be represented in the scores or loading plot? 

What can you say about where it would be?

d) Does this plot indicate which group is most different from the others? If so, which one?

e) Would the location of the other groups change if we removed the neural tissues from the data set? Justify 

your answer.

f) Your colleague accidentally scaled the variables by standard error instead of standard deviation before 

running PCA. How would the loadings and scores change?


first three principal components an additional 5% (from 80%
to 85%), 55% more reads were required. We confirmed these
analytical results by simulating shallow mRNA-seq through
direct sub-sampling of reads from the raw dataset (see the
Experimental Procedures).

Further, as predicted by Equation 1, the dominant principal
components were more robust to shallow sequencing noise
than the trailing, minor principal components. This is a direct
consequence of the fact that the leading principal values are
well separated from other principal values, while the trailing
values are spaced closely together. For instance, l1 is separated
from other principal values by at least l1 ! l2 = 5 3 10!6, more
than two orders of magnitude greater than the minimum separa-
tion of l25 from other principal values (1.5 3 10!8) (Figure 2B).
Therefore, the 25th principal component requires almost four

million reads, 140 times more than the first principal component,
to be recovered with the same 80% accuracy.
To explore whether the shallow principal components also

retained the same biological information as the programs
computed from deep mRNA-seq data, we compared results
from Gene Set Enrichment Analysis applied to shallow and
deep mRNA-seq data. At a read depth of 107 reads per sample,
the first three principal components have many significant func-
tional enrichments with the second and third principal compo-
nents enriched for neural and hematopoietic processes, respec-
tively (Figure 2C; see Figure S1C for first principal component).
These functional enrichments corroborate the separation seen
when the gene expression profiles from each tissue are pro-
jected onto the second and third principal components (see
the Experimental Procedures). Neural tissues (cerebellum,

Figure 2. Transcriptional States of Mouse Tissues Are Distinguishable at Low Read Coverage
(A) Principal component error as a function of read depth for selected principal components for the Shen et al. (2012) data. For first three principal components,

1% of the traditional read depth is sufficient for achieving >80% accuracy. Improvements in error exhibit diminishing returns as read depth is increased. Less

dominant transcription programs (principal components 8 and 15 shown) are more sensitive to sequencing noise.

(B) Variance explained by transcriptional program (blue) and differences between principal values (green) of the Shen et al. (2012) data. The leading, dominant

transcriptional programs have principal values that are well separated from later principal values, suggesting that these should be more robust to measurement

noise.

(C) GSEA significance for the top ten terms of principal component two (top) and three (bottom) as a function of read depth. 32,000 reads are sufficient to recover

all top ten terms in the first three principal components. (Analysis for first principal component shown in Figure S1C.)

(D) Projection of a subset of the Shen et al. (2012) tissue data onto principal components two and three. The ellipses represent uncertainty at specific read depths.

Similar tissues lie close together. Transcriptional program two separates neural tissues from non-neural tissues while transcriptional program three distinguishes

tissues involved in hematopoiesis from other tissues. This is consistent with the GSEA of these transcriptional programs in (C).

242 Cell Systems 2, 239–250, April 27, 2016



Question 6 (15 pts)

Kim et. al. used partial least squares regression to interpret the relationship between signaling factors and 
mammary epithelial cell migration before and after epithelial-mesenchymal transition. To do so, they regress 
signaling measurements against migration speed (Y).


a) What pre-processing was likely necessary before using the data to build the model?

b) What effect to you predict an Erk inhibitor would have on measured cell speed?

c) How do you expect levels of PKC  activation to differ in the mesenchymal cells as compared to the 

epithelial ones?

d) How do the R2Y and Q2Y quantities differ? What can you say about how each quantity varies in general 

with respect to the number of components?

e) You built a PLSR model and prepare the data by z-scoring each column/variable, then wish to 

crossvalidate the model. Do you need to z-score again for each fold? Why/why not?

δ

more responsive to EGF treatment. This is not necessarily
surprising, because it is appreciated that receptor expression
changes (whether at mRNA or protein level) alone are typically
not predictive of associated activity or inhibitor effectiveness;
a prominent instance of this is the lack of correlation of EGFR
expression in patient tumors with anti-EGFR kinase inhibitor
efficacy (e.g. (36)). Thus, assays that focus on receptor ex-
pression levels may not by themselves effectively identify key
targets for therapeutic intervention.

The resulting activation profiles showed diverse kinetics
across individual signals that were growth factor- and EMT
state-dependent. Basal phosphorylation levels were depen-
dent on the EMT state, with EGFR, Met, Erk, Src, !-catenin,
HSP27, and IRS-1 displaying significantly higher initial phos-
phorylation in epithelial cells, but Akt, GSK3"/!, PKC#, PLC$,
and JNK displaying higher phosphorylation levels in mesen-
chymal cells (Fig. 3B). Dynamic changes in JNK, IRS-1, Src,
HSP27, GSK3"/!, and !-catenin phosphorylation after
growth factor treatment were cell-state specific and corre-
lated with their initial phosphorylation levels (Fig. 3C). How-
ever, activation of PKC# and PLC$ along with EGFR canonical
pathways Erk and Akt were relatively growth factor-depen-
dent and insensitive to EMT state in most cases (Fig. 3C). Visual
inspection of signal differences across the diverse treatments
and contexts offered little insight into which signals contribute
most significantly to the profoundly different EMT-dependent
migratory responses. The consequent implication is that cells
must quantitatively integrate the activities of multiple signaling
pathways to generate robust decisions concerning context- and
treatment-dependent migration responses.

Partial Least-Squares Regression Model Accounts for Di-
verse Motility Behavior Across Phenotypic Modes and Growth
Factor Treatments—To understand this quantitative mul-

tipathway integration, we applied PLSR to the signaling data
set to correlate the intracellular signaling activities to the
phenotypic response of the cells and evaluate the ability of
intracellular signaling nodes to predict the disparate EMT
motility response (Fig. 4). Despite likely differences in which
underlying biophysical processes (e.g. lamellipod protrusion,
cytoskeletal contraction, and cell and substratum adhesion
and de-adhesion) may be rate-limiting for the epithelial and
mesenchymal modes of migration, we found that a single
model comprised of two principal components (quantitative
combinations of the key signaling node phosphorylation
states, for both background activity {‘T0!} and growth factor
stimulation-induced activity integrated over the 1-hour time
period {‘Int’}) was able to account in a unified manner for
migration across both EMT states and all four growth factor
conditions. The Loadings and Scores plots shown in Fig. 4A
for this model illustrate some interesting insights. Phos-
phorylation state of some signaling nodes (GSK3"/!, PLC$,
PKC#, JNK, Akt) are more closely associated with mesenchy-
mal migration, whereas some others (!-catenin, IRS-1, Src)
are more closely associated with epithelial migration; for yet
some other signaling nodes (Erk, HSP27) growth factor-stim-
ulated activities are more closely associated with mesenchy-
mal migration whereas their constitutive activities are more
closely associated with epithelial migration. Thus, there is no
individual signal that is uniquely associated with either migra-
tion mode, nor is solely stimulated signaling the crucial deter-
mining feature. Nonetheless, the quantitative combination of
these signals is able to account for the entire scope of be-
havior comprehensively, as Fig. 4B demonstrates leave-one-
out cross-validation of this two-component model. Basal
phospho-signal levels were found to be important for predic-
tion of motility in conjunction with the dynamic treatment-
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FIG. 4. A multivariate partial least squares regression model captures signaling metrics contributing most to the prediction of both
epithelial and mesenchymal cells. A PLSR model has been constructed using the initial phosphorylation levels and those integrated over 60
min of the 14 signals described in Fig. 3 across serum-free, EGF, HRG, IGF, and HGF treatments. A, Projection of loadings (left) and scores
(right) onto the first two principal components. Loadings of individual signaling metrics (Int " integral of phosphorylation; T0 " initial
phosphorylation) are plotted in black. Loading of cell speed metric is plotted in red. Scores of each growth factor treatment are plotted black
for epithelial and red for mesenchymal cells. B, Leave-one-out cross-validation of the PLSR model with cell speeds predicted by the two
principal component model versus experimentally measured cell speeds.
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