
BE C175/275 Midterm, Winter 2020 

Question 1 (15 pts)

Chao et al, Mol Syst Biol, 2019 identified that the lengths of individual cell cycle phases are Erlang-
distributed. This is a distribution that naturally arises for processes made up of   subprocesses in series. (That 
is, if  , a cell cycle phase is made up of 10 steps for the cell to progress through that phase.) The Erlang 
distribution is defined by the equation:


 


where   is the rate of progression through each subprocess.


Note: You can just setup each problem; you do not need to solve the integrals. 

a) What is the mean of this distribution when   and  ? 

 


b) What is the skew of this distribution when   and  ? 
?  

   Positive skew 

c) You perform an experiment where you watch cells for 48 hrs, and measure how long they take to progress 
through the cell cycle. Because you only watched for 48 hrs, you’ve truncated your distribution (made its 
range  . Renormalize your expression to make it into a truncated distribution. (Hint: You can 
add a scaling factor,  , but then need to figure out its value.) 

 


d) What are three things (total) you can say about the sampling distributions of the mean for N=1 and N=5? 
With N=1 it is just the distribution you started with, for N=5 it has lower variance and is more normal.


e) You want to test whether your measurements follow the truncated distribution you identified. How could 
you do this? (Very briefly describe the process.)  
KS test.





Question 2 (20 pts)

You are asked to fit a series of binding measurements to a receptor-ligand binding model:
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Where  ,  , and   are unknowns,   is the concentration of ligand in 
solution, and   is the measured amount of binding.   indicates the 
amount of nonspecific binding.


a) What method should you use to fit these measurements?  
Nonlinear least squares.


b) You colleague asks you if additional measurements of this curve would 
be helpful, or if these are enough to get an accurate measurement of   
within a standard deviation of 1 nM. What method could you use to 
quantify whether this has been accomplished?  
Bootstrap.


c) Say you have many fitting points (say N > 50). What can you say about 
how you would expect new calibration points to be distributed? How 
about how   would be distributed if you were to collect your data 
again many times? 
New calibration points will be normally distributed around the prediction line.   would be normally 
distributed according to the central limit theorem.


d) Your colleague uses a Scatchard plot to analyze the data in parallel to you. To do so, they plot the data as 
  versus  . This provides a linear binding relationship where the slope is   and y-intercept 
 . What is the benefit of fitting the data this way? What is the problem with doing this? 
Transforming your data makes it possible to apply ordinary least squares, which is numerically simpler, but 
doing this distorts your assumption of normally distributed error.


e) To measure binding, your team has been using the ratio of two wavelengths from spectroscopy data 
(because your protein’s absorption changes with binding). You wonder whether the entirety of the 
spectroscopy data might be helpful. Therefore, rather you redesign your model as follows, for a ligand 
where you know the   (  is your unknown):  

  

To fit your model, you measure absorption at 200 wavelengths for 10 concentrations of ligand binding ( ). 
Describe how you could calibrate your model. Justify your choices.  
Must apply regularization or principal components regression, since you have more variables than data. 
Any form of regularization is acceptable.


Question 3 (15 pts)

A newly identified coronavirus has been spreading throughout the Wuhan region in China, and a few cases 
have been confirmed within the U.S. along with other countries. You are part of a rapid response team 
developing a blood-based assay for the virus. The goal is to deploy this assay within airports in the U.S. to 
identify individuals who are infected.


a) Write out Bayes' law, and rewrite the equation for the probability of someone having the virus given a 
positive test.  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b) You estimate that your test has a 95% sensitivity and 90% specificity. The false positive rate is 
  and the false negative rate is  . Roughly 8,000 people enter the U.S. from 
China each day. Assuming one of those individuals is sick, what are the number of false and true positives 
you will have each day?  
  
 


c) Calculate the probability of a passenger having the virus, given a positive test result. 
 


d) What could we do to further ensure positive tests are giving us true results? (You can’t improve the test 
itself.) 
Only test people who have other sensitive symptoms, like fever.


e) A followup PCR test has a sensitivity and specificity of 50% and 90%, respectively. What is the chance 
that the PCR test will be positive, given someone is tested only after a positive result with your assay? 
  
 


Question 4 (20 pts)

a) What is cross-validation and what does it evaluate?  

Evaluates the prediction error by removing a portion of the dataset for validation.

b) Outline the steps to performing cross-validation.  

Split, fit, quantify error. Repeat over folds then average.

c) How do predictions from cross-validation necessarily differ from fitting a full model? 

Higher variance.

d) Why are multiple folds necessary?  

Average out the effect of the left-out group.

e) What does bootstrapping pretend to do with your data?  

Pretends to make entirely new datasets of the same size.

f) Outline the steps for performing bootstrapping.  

Resample with replacement, then fit. Repeat.


Question 5 (15 pts)

Meyer et al used PCA to evaluate how the AXL receptor alters signaling in response to other RTK ligands like 
EGF, TGFɑ and HGF. To do so, they measured a panel of phosphorylation sites in cells with or without AXL 
knocked down by siRNA, in response to stimulation with each ligand.


1 − specificity 1 − sensitivity

TP = p(pos test | + )p( + ) = 0.95 × 1 = 0.95
FP = p(pos test | − )p( − ) = 0.1 × 7999 = 799.9

0.95 × 1/8000
0.95 × 1/8000 + 0.1 × 7999/8000 = 0.95

0.95 + 799.9 = 0.0012

p(PCR) = p(PCR |virus)p(virus) + p(PCR | ∼ virus)p( ∼ virus)
p(PCR) = 0.5 × 0.0012 + 0.1 × (1 − 0.0012) = 0.10



a) What 
are 
three 

benefits 
decomposition methods like PCA provide? 
Visualization, compression, noise reduction.


b) What are two things you can always say about PC2 in relation to PC1?  
PC2 always explains a smaller percentage of the data variance, and is orthogonal to PC1.


c) The dataset includes each phosphorylation site (e.g., pJNK) as a column and each treatment (e.g., EGF) 
as a row/observation. Does the first plot (B) show a scores or loadings plot?  
Scores plot.


d) You measure a new phosphorylation site that is only induced by HGF stimulation, and is not affected by 
siAXL treatment. Where would you expect it to be on the loadings plot?  
Negative along PC2. Probably not much weighting on PC1.


e) Would adding this new phosphorylation site affect the position of the other points? Explain. 
Yes. PCA captures the variation in the dataset, so changing any of the data will (at least subtly) change all 
of the decomposition.


f) Your colleague accidentally scaled each variable to twice the standard deviation, rather than the standard 
deviation. How would the scores and loadings change?  
Either the scores or loadings will be scaled to twice the magnitude, but the relative position of the points 
will not change. 

cellular processes induced at such nonphysiological amounts of stimulation.
Other receptor-proximal components, such as the adaptor protein SHC and
the CDC2 kinase, exhibited similar phosphorylation after stimulation at the
EGF dose used in the signaling studies here (fig. S4). In contrast, AXL
knockdown affected the phosphorylation of Akt in response to all doses
of EGF by a shift inmagnitude (“vertically”) rather than in sensitivity (“hor-
izontally”) (Fig. 4B). To deconvolve these concomitant changes in the phos-
phorylation of EGFR andAkt, we plotted the abundance of phosphorylated
Akt as a function of phosphorylated EGFR in cells treated with either con-
trol siRNA or AXL siRNA (Fig. 4C). This revealed a uniform downward
shift across all stimulation amounts in the absence of AXL, indicating a
consistent fold change in the magnitude of signal transduction. Each curve
could bewell described to first approximation by a Hill function, with com-
parable Kd (threshold of half-maximal activation) but markedly different
maximal activation (Fig. 4D). To identify the level at which this regulation
may occur, we fit these data to alternative models of signal transduction
from the receptor layer (see Materials and Methods). The data were best
explained by a model in which basal and stimulated AXL activities exist,
the latter in proportion to EGFRactivation and inwhich transduction of both

signals occurs through separately saturable processes (table S3). Thismodel
is consistent with our biochemical observations (Fig. 2A). The effect of
baseline activation ofAXLcan be observed from the plot of phosphorylated
Akt as a function of pan-phosphotyrosine EGFR, where at low EGFR ac-
tivation in the presence ofAXL, the phosphorylation ofAktwas higher than
a simpleHill regressionwould suggest (Fig. 4C). Biologically, this indicates
that the components downstream of the receptor are saturated by maximal
EGFR activation and that, at least with respect to phosphorylated Akt, the
transactivation of AXL increases the effective amount of RTK signaling and
amplifies the signaling consequence of stimulation.

Multipathway signaling correctly predicts AXL
knockdown inhibition of EGF-stimulated protrusion
We next asked how the broad effects on signaling that resulted from AXL
knockdown might influence the migration behavior of cells. We elected to
use acute membrane protrusion as a surrogate measurement of three-
dimensional migratory capacity on the basis of our previous findings that
this assay corresponds well to growth factor–stimulated invasive motility
within extracellular matrix (47). Protrusion measurements from wild-type
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Fig. 3. AXL knockdown attenuates downstream signaling in MDA-MB-
231. (A) Ratios of fold activation after treatment with growth factor
in AXL knockdown cells relative to wild-type cells: ([siAXL GF]/[siAXL
Unstim]) ÷ ([siControl GF]/[siControl Unstim]). The unstimulated bar in-
dicates the ratio of unstimulated abundance: [siAXL Unstim]/[siControl

Unstim]. Inset shows the Spearman correlation across all phosphosites
between the unstimulated and stimulated ratios (*P < 0.05). (B) PCA score
plot of signaling data after AXL knockdown. Line colors indicate stimulation
conditions denoted in (A). (C) Loading plot of signaling data after AXL
knockdown.
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Question 6 (15 pts)

Kim et al used partial least squares regression to interpret the relationship between signaling factors and 
mammary epithelial cell migration before and after epithelial-mesenchymal transition. To do so, they regress 
signaling measurements against migration speed (Y).


a) How could you determine whether epithelial IGF’s score is significantly positive on PC1, or positive within 
the variance of the model? (Hint: How would this point’s score change if we collected a new dataset?) 
Bootstrapping.


b) How would the model predict a JNK inhibitor would affect cell speed (use JNK Int, ignore JNK T0)? 
Reduce cell speed.


c) How would you expect β-catenin phosphorylation to differ between epithelial and mesenchymal cells? 
Higher in epithelial cells.


d) What do R2Y and Q2Y refer to? What can you say about how each varies with respect to the number of 
components? 
The % variance captured by the model upon fitting (R2Y) or cross-validation (Q2Y). R2Y will increase and 
asymptotically approach 1 with more components. Q2Y will likely increase and then decrease after a 
point.


e) You built a PLSR model and prepare the data by z-scoring each column/variable, then wish to cross-
validate the model. Do you need to z-score again for each fold? Why/why not? 
Must z-score within each fold to get rid of the effect of the left-out data. 

more responsive to EGF treatment. This is not necessarily
surprising, because it is appreciated that receptor expression
changes (whether at mRNA or protein level) alone are typically
not predictive of associated activity or inhibitor effectiveness;
a prominent instance of this is the lack of correlation of EGFR
expression in patient tumors with anti-EGFR kinase inhibitor
efficacy (e.g. (36)). Thus, assays that focus on receptor ex-
pression levels may not by themselves effectively identify key
targets for therapeutic intervention.

The resulting activation profiles showed diverse kinetics
across individual signals that were growth factor- and EMT
state-dependent. Basal phosphorylation levels were depen-
dent on the EMT state, with EGFR, Met, Erk, Src, !-catenin,
HSP27, and IRS-1 displaying significantly higher initial phos-
phorylation in epithelial cells, but Akt, GSK3"/!, PKC#, PLC$,
and JNK displaying higher phosphorylation levels in mesen-
chymal cells (Fig. 3B). Dynamic changes in JNK, IRS-1, Src,
HSP27, GSK3"/!, and !-catenin phosphorylation after
growth factor treatment were cell-state specific and corre-
lated with their initial phosphorylation levels (Fig. 3C). How-
ever, activation of PKC# and PLC$ along with EGFR canonical
pathways Erk and Akt were relatively growth factor-depen-
dent and insensitive to EMT state in most cases (Fig. 3C). Visual
inspection of signal differences across the diverse treatments
and contexts offered little insight into which signals contribute
most significantly to the profoundly different EMT-dependent
migratory responses. The consequent implication is that cells
must quantitatively integrate the activities of multiple signaling
pathways to generate robust decisions concerning context- and
treatment-dependent migration responses.

Partial Least-Squares Regression Model Accounts for Di-
verse Motility Behavior Across Phenotypic Modes and Growth
Factor Treatments—To understand this quantitative mul-

tipathway integration, we applied PLSR to the signaling data
set to correlate the intracellular signaling activities to the
phenotypic response of the cells and evaluate the ability of
intracellular signaling nodes to predict the disparate EMT
motility response (Fig. 4). Despite likely differences in which
underlying biophysical processes (e.g. lamellipod protrusion,
cytoskeletal contraction, and cell and substratum adhesion
and de-adhesion) may be rate-limiting for the epithelial and
mesenchymal modes of migration, we found that a single
model comprised of two principal components (quantitative
combinations of the key signaling node phosphorylation
states, for both background activity {‘T0!} and growth factor
stimulation-induced activity integrated over the 1-hour time
period {‘Int’}) was able to account in a unified manner for
migration across both EMT states and all four growth factor
conditions. The Loadings and Scores plots shown in Fig. 4A
for this model illustrate some interesting insights. Phos-
phorylation state of some signaling nodes (GSK3"/!, PLC$,
PKC#, JNK, Akt) are more closely associated with mesenchy-
mal migration, whereas some others (!-catenin, IRS-1, Src)
are more closely associated with epithelial migration; for yet
some other signaling nodes (Erk, HSP27) growth factor-stim-
ulated activities are more closely associated with mesenchy-
mal migration whereas their constitutive activities are more
closely associated with epithelial migration. Thus, there is no
individual signal that is uniquely associated with either migra-
tion mode, nor is solely stimulated signaling the crucial deter-
mining feature. Nonetheless, the quantitative combination of
these signals is able to account for the entire scope of be-
havior comprehensively, as Fig. 4B demonstrates leave-one-
out cross-validation of this two-component model. Basal
phospho-signal levels were found to be important for predic-
tion of motility in conjunction with the dynamic treatment-
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FIG. 4. A multivariate partial least squares regression model captures signaling metrics contributing most to the prediction of both
epithelial and mesenchymal cells. A PLSR model has been constructed using the initial phosphorylation levels and those integrated over 60
min of the 14 signals described in Fig. 3 across serum-free, EGF, HRG, IGF, and HGF treatments. A, Projection of loadings (left) and scores
(right) onto the first two principal components. Loadings of individual signaling metrics (Int " integral of phosphorylation; T0 " initial
phosphorylation) are plotted in black. Loading of cell speed metric is plotted in red. Scores of each growth factor treatment are plotted black
for epithelial and red for mesenchymal cells. B, Leave-one-out cross-validation of the PLSR model with cell speeds predicted by the two
principal component model versus experimentally measured cell speeds.
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