BE 175 Midterm, Winter 2023

Question 1 (20 pts)

These questions are meant to be answered with short answers (less than three sentences should be plenty).

What is cross-validation and what does it estimate? Why are multiple folds necessary?
What is the risk of applying your model in patient groups very different from your cross-validation dataset?
What is bootstrapping and what does it estimate? Where do the bootstrapped datasets come from?

During hypothesis testing, how can you determine the false negative and false positive rates? Be as specific as
possible.

What does regularization do to the degrees of freedom of a model, the fitting error, and the prediction error? Be sure
to distinguish effects that always occur from those that sometimes occur.

Question 2 (20 pts)

Generally, prostate cancer screening is recommended for men (and those assigned male at birth) aged 45 and older. One
form of screening is a PSA test. You are a 45-year-old man with a typical prostate cancer risk. You are screened, and
your PSA level is 3.1 ng/mL. A PSA cutoff of >3.0 ng/mL has a sensitivity and specificity of 32% and 85%, respectively,
for the detection of any prostate cancer. At 45 years old, the prostate cancer incidence rate is ~40 per 100,000.

Write out Bayes' law and then rewrite the equation for you having prostate cancer given the positive PSA test result.
What is the chance you have prostate cancer, given your positive test?

As a follow-up, you have a biopsy taken. A biopsy has a sensitivity and specificity of 50% and 95%, respectively.
What is the probability that the biopsy result is negative?

The incidence of prostate cancer rapidly drops off in younger individuals below age 45. PSA levels are routinely
checked in blood panels but are not acted upon until age 45. Why is age useful to consider for this test?



Question 3 (20 pts)
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Kotliar et al, eLife, 2019 propose non-negative
matrix factorization (NNMF) as a method to
identify cells from single-cell RNAseq that share
gene expression programs and cell identities.
One of the paper’s figures is partly reproduced
here.

a) What does NNMF maximize? Under what
constraints? Describe the benefit of using NNMF
versus other matrix factorization schemes like
PCA.

b) Your colleague comes to you and says they are
getting different results each time they fit with
NNMF. Is something wrong? If not, what is going
on here? Is there a step in the fitting process they
could modify to get reproducible results?

¢) The starting dataset in the figure is made up of
a matrix of 5000 genes by 500 cells. One of the
resulting factorization matrices is plotted in (a),
and is made up of 31 components by 500 cells.
What is the size and composition of the other
matrix? Given this, how do you think they know
component 1 is a type of astrocytes (a neuronal
cell type)?

d) How is the data normalized before using
NNMF?



Question 4 (20 pts)

Carroll et al, Cancer Research, 2018 examined how cytokines released by activated macrophages (AAMs) in the
peritoneum contribute to adhesion of ovarian cancer cells and thus metastasis from ascites fluid. To do this, they
measured the abundance of cytokines with and without AAMs using several different cell lines. They then built a model
predicting the adhesion of these cell lines in the same conditions.
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Figure 2.

PLSR prediction and experimental validation of role for MIP-1B in increased HGSOC adhesion. A, Ligands (z-score normalized) detected in the absence or presence of
AAMs. Data are average of n = 3 replicates per donor; each column represents a unique donor/cell line combination. B, Comparison of PLSR-predicted to
experimentally observed HGSOC adhesion to LP-9. C, Correlations of ligands and observed adhesion (% Adhered) with PC1and PC2 from the PLSR model. D, VIP > 1
(dark gray) indicate important variables to predict adhesion. Those that positively correlated with HGSOC adhesion are shown in bold [and bolded in the heatmap (A)
and labeled in C]. E, OV90 cocultures were treated with neutralizing antibodies against IL13, PDGF-BB (PDGF), MIP-1B8 (MIP), or isotype (Iso) during coculture;n =3
replicates, one AAM donor. F, HGSOC adhesion to LP-9 treated with vehicle or 100 ng/mL MIP-1B, n = 3. Data is average + SD; *, P < 0.05 vs.-AAMs of same
isotype/antibody (E) or vehicle (F); *, P < 0.05 vs. +AAMs/isotype (E) by two-sided t test (F), with Bonferroni correction (E).



What properties of PLSR make it an especially useful model for biological data?

Carroll et al does not label Figure 2C quite right in the figure caption—they call the plotted information the
“correlations.” Based on the context information, that they are predicting the percentage of cells adhered and that
they are measuring variation in the abundance of each cytokine, what is this plot showing from the PLSR model?

In Figure 2D, the authors use the VIP (variable importance of projection) scores to determine which variables are
most important to predicting the outcome. Briefly, this score aims to summarize the influence of each PC on the
output. Scores over 1 are typically taken to be significant, and the authors follow this advice. You want to calculate
which scores would be consistently over 1 if the authors were to collect a series of entirely new datasets. How might
you go about that? Describe the steps of this process for this dataset in detail.

The authors go on to validate the importance of three different cytokines by using a neutralizing antibody against
them, in essence setting the concentration to 0, and measuring the amount of adhesion. The results of this are
shown in Figure 2E. Which results of testing these antibodies fit with the inferences of the model? Explain. (“Iso” is a
negative control, MIP is MIP-1(3.)

How are PCs necessarily related to one another with PCA? Do you see this relationship in Figure 2C? Based on this
observation, what can you say about this relationship with PLSR? How would you expect Figure 2C would change if
PCA were performed instead of PLSR?



Question 5 (20 pts)

Yuan et al, Cell Systems, 2020 developed a computational model, CellBox, in which various perturbations (such as gene
knockouts) are simulated by a mechanistic dynamical model. The model includes weights for every gene-gene

interaction as its unknowns ( Wi ), which it uses to predict the effect of each perturbation. Predictions are made by

inputting a static vector u that describes which genes have their expression inhibited or promoted. The model then
simulates the change in expression of every gene until it reaches steady state, and then these steady states are
compared to the experimental measurements, minimizing the sum of squared error of the difference between the model
and data. The weights are then fit to cause the model to match the observed molecular changes. Through this process,
the model is able to use perturbations to infer gene-gene interaction effects.
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What type of statistical model that we discussed could be used to perform the fitting? Are there any caveats/
concerns with this model? What information must be provided besides the model and data to start the fitting
process?

Yuan et al includes roughly 200 perturbations (observations) and 100 genes in their fitting data. This means that their
model has 10,000 gene-gene interaction coefficients (unknowns). Part of the goal of the model is to identify a small
subset of these interaction coefficients that are important to explaining the data. Is there anything they need to do to
augment their model to enable fitting? If so, describe how you would tune this additional component.

One potential purpose of the model could be to predict what would happen if you were to knockdown a gene, which
we can consider as a new perturbation. How could you check that the model can perform this task? Describe the
steps to do so.

Another question the authors ask of the model is which interactions are present to a statistically significant degree
given the data. (In other words, whether the interactions would consistently be found again if the dataset was
collected anew.) How can you check this?

You perform all the above steps, and are mostly satisfied with your model. However, when simulating the model, you
find that it is always rapidly oscillating which does not seem biologically plausible. How could you adjust the fitting
to prevent oscillatory behavior? Describe in detail. Can you/should you combine this with what you did in step (b)?
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