
BE 275 Midterm, Fall 2022 

Question 1 (10 points)

a) What is cross-validation? Describe the process of performing it. What does it estimate, what does it mean for 

cross-validation to be an estimate, and how is cross-validation systematically biased?


b) What are the hyperparameters of a model? How are these typically chosen?


c) What is regularization? What aspects of a model does it improve and worsen?


d) What are three reasons to use a partial least squares model over a LASSO model? What are two reasons you might 
choose to use a LASSO model instead?


e) What are three advantages and disadvantages to a Bayesian analysis over a frequentist one? What are two 
circumstances (however rare) under which the two approaches exactly agree?


Question 2 (10 points)


Yuan et al, Cell Systems, 2020 developed a computational model, CellBox, in which various perturbations (such as gene 
knockouts) are simulated by a mechanistic dynamical model. The model includes weights for every gene-gene 
interaction, which it uses to predict the effect of each perturbation. Predictions are made by running the model until it 
reaches steady state, and then these steady states are compared to the experimental measurements, minimizing the 
sum of squared error of the difference. Perturbations are performed by setting certain genes to an abundance of zero. 
The weights are then fit to cause the model to match the observed molecular changes. Through this process, the model 
is able to use perturbations to infer gene-gene interaction effects.


a) What type of statistical model that we discussed could be used to perform the fitting? Are there any caveats/
concerns with this model? What information must be provided besides the model and data?


antibody-based reverse-phase protein arrays (RPPA). In parallel,
cellular phenotypes were assayed, including cell-cycle progres-
sion and cell viability. With parallel measurements of proteomic
and phenotypic responses to a systematic set of perturbations,
this dataset provides sufficient information to construct network
models that quantitatively link molecular changes to cellular
responses.
We used a set of ODEs with a nonlinear envelope (Figure 1B)

to model the dynamic responses of the system to drug perturba-
tions (STARMethods). The parameters of the ODEs (wij, ~10,000
in total) are the interaction strengths between the entities in the
network model. The simplicity of the interaction dynamics (Fig-
ure 1B), the nonlinear envelope, as well as the restoration term

!ai xi ðtÞ are computational devices, roughly analogous to
mean-field approaches, to account for the fact that the data
are limited to a relatively small fraction of all cellular components
and to avoid instabilities (Nelander et al., 2008; Molinelli et al.,
2013; Korkut et al., 2015). The interaction parameters were
randomly initialized and updated throughout the model training
process, with the objective of minimizing a loss function. For
the loss function, we chose the Euclidean distance between
experimental data and the results of the numerical simulation
of the ODE model, plus an L1 regularization penalty on network
density to avoid overfitting (STAR Methods, Equation 3). We
used Heun’s ODE solver (S€uli and Mayers, 2003) to numerically
simulate the ODE system and the Adam optimizer (Kingma and

Figure 1. CellBox: Dynamic Modeling of Cellular Systems with Perturbation Data
(A) Perturbations such as drugs were used to disturb the cellular system. The cell responses, including protein- and phosphoprotein-level changes, and

phenotypic changes, were measured to provide information for model construction.

(B) Systematic responses of the cells under various drug perturbations were used to construct an interpretable machine-learning model. CellBox models system

behavior in terms of interaction parameters connecting molecular (proteins and phosphoproteins) and phenotypic variables using a set of differential equations.

CellBox was trained iteratively by optimizing interaction parameters to fit the numerically simulated system response to experimental observations. After training

on pairwise data of input perturbation and output system behavior, the CellBox model can be used to predict the cellular response to arbitrary perturbation

conditions.
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b) Yuan et al includes roughly 200 perturbations (observations) and 100 genes in their fitting data. This means that their 
model has 10,000 gene-gene interaction coefficients. Part of the goal of the model is to identify a small subset of 
these interaction coefficients that are important. Is there anything they need to do to augment their model to enable 
fitting? If so, describe how you would tune this additional component.


c) One potential purpose of the model could be to predict what would happen if you were to inhibit or knockout other 
genes. How could you check that the model can perform this task? Describe the steps to do so.


d) Another question the authors ask of the model is which interactions are present to a statistically significant degree 
given the data. (In other words, whether the interactions would consistently be found again if the dataset was 
collected anew.) How can you check this?


e) You perform all the above steps, and are mostly satisfied with your model. However, when simulating the model, you 
find that it is always rapidly oscillating which does not seem biologically plausible. How could you adjust the fitting 
to prevent oscillatory behavior? Describe in detail. Can you/should you combine this with what you did in step #2?


Question 3 (10 points)

When there is a constant risk of an event happening, such as one’s disease progressing, the time to that event can be 
modeled as an exponential distribution:


 


This distribution forms the basis for the analysis of clinical trials, wherein each patient is assumed to be at constant risk 
of having some event of interest. A study is often looking for a significant difference in the time to an event across the 
group.


a) A process called censoring happens when an event does not happen by the end of the study for one of the patients. 
With censoring, the exact time to an event is not known, but it is known that it happens after the experiment ends. 
This means that we know the time to an event ( ) is larger than the experiment time  , but we do not know  ’s exact 
value. Given an experiment runs for   amount of time, and the event has not yet happened, what is an expression 
for this probability?


b) You run a clinical trial arm with three patients who each have an event at 1 year, 2 years, and no event before the trial 
ends at 3 years. What is the expression for the probability of observing this result (leave in terms of  )? Does it 
depend on the length of the trial?


c) Often clinical trials are designed such that a certain fraction of patients progress in their disease (i.e. have an event) 
before the trial is stopped. Say a clinical trial has precisely half of its patients progress in their disease by the end of 
1 year. What is  ?


d) Does this distribution show a positive or negative skew? What does this tell us about where we will tend to find 
events? (You can analyze this qualitatively but should show an expression.)


e) What can you say about the distribution of the average time to events across a trial arm (N=10), compared to the 
average time to an event distribution for individuals within the trial?
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Question 4 (10 points)

Carroll et al, Cancer Research, 2018 examined how cytokines released by activated macrophages (AAMs) in the 
peritoneum contribute to adhesion of ovarian cancer cells and thus metastasis from ascites fluid. To do this, they 
measured the abundance of cytokines with and without AAMs using several different cell lines. They then built a model 
predicting the adhesion of these cell lines in the same conditions.


detectable levels of CCR5 (Supplementary Table S3). We treated
LP-9 with 100 ng/mL MIP-1b and a CCR5 blocking antibody
and determined that blocking CCR5 inhibited MIP-
1b!stimulated expression of SELP (Fig. 3F). Clinically, CCR5
has been the target of drug development as it is an essential co-
receptor for HIV entry. Maraviroc, a CCR5 allosteric modulator
approved to treat HIV (22), was also effective in inhibiting MIP-
1b!stimulated expression of SELP (Fig. 3G). CCR5 has been
shown to activate NF-kb, PI3K, and MAPK (23, 24), which can
regulate SELP expression in other cell types (25–27). Immuno-
fluorescent staining of p65 showed no increase in nuclear
colocalization upon treatment with MIP-1b (Fig. 3H), suggest-
ing that NF-kb does not play a role in P-selectin upregulation.

Treatment with PD0325901, an MEK inhibitor, significantly
decreased SELP expression in both vehicle and MIP-1b–treated
LP-9, suggesting that MEK activation is necessary for even the
low basal expression of SELP in LP-9 (Fig. 3I). In contrast,
inhibition of PI3K with LY294002 had no impact on basal SELP
expression but significantly reduced the increase in SELP
observed with MIP-1b treatment (Fig. 3I). Analysis of phos-
phorylation of ERK and AKT in response to MIP-1b treatment
demonstrated no change in pERK, but an increase in pAKT at
both Thr308 and Ser473 (Fig. 3J). Combined, these results
suggest that MIP-1b activates CCR5 and PI3K to increase SELP
transcription, and that therapy inhibiting CCR5 activation, such
as maraviroc, may be effective in inhibiting SELP upregulation.

Figure 2.
PLSR prediction and experimental validation of role for MIP-1b in increased HGSOC adhesion.A, Ligands (z-score normalized) detected in the absence or presence of
AAMs. Data are average of n ¼ 3 replicates per donor; each column represents a unique donor/cell line combination. B, Comparison of PLSR-predicted to
experimentally observed HGSOC adhesion to LP-9. C, Correlations of ligands and observed adhesion (% Adhered) with PC1 and PC2 from the PLSRmodel. D, VIP > 1
(dark gray) indicate important variables to predict adhesion. Those that positively correlatedwithHGSOCadhesion are shown in bold [andbolded in the heatmap (A)
and labeled in C]. E,OV90 cocultures were treated with neutralizing antibodies against IL13, PDGF-BB (PDGF), MIP-1b (MIP), or isotype (Iso) during coculture; n¼ 3
replicates, one AAM donor. F, HGSOC adhesion to LP-9 treated with vehicle or 100 ng/mL MIP-1b, n ¼ 3. Data is average # SD; $ , P < 0.05 vs.–AAMs of same
isotype/antibody (E) or vehicle (F); ^, P < 0.05 vs. þAAMs/isotype (E) by two-sided t test (F), with Bonferroni correction (E).
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a) What procedure was used to calculate the results in Figure 2B?


b) Carroll et al does not label Figure 2C quite right in the figure caption—they call the plotted information the 
“correlations.” Based on the context information, that they are predicting the percentage of cells adhered and that 
they are measuring variation in the abundance of each cytokine, what is this plot showing from the PLSR model?


c) In Figure 2D, the authors use the VIP (variable importance of projection) scores to determine which variables are 
most important to predicting the outcome. Briefly, this score aims to summarize the influence of each PC on the 
output. Scores over 1 are typically taken to be significant, and the authors follow this advice. You instead want to 
calculate which scores would be consistently over 1 if the authors were to collect an entirely new dataset. How 
might they go about that? Describe the steps of this process for this dataset in detail.


d) The authors go on to validate the importance of three different cytokines by using a neutralizing antibody against 
them, in essence setting the concentration to 0, and measuring the amount of adhesion. The results of this are 
shown in Figure 2E. Which results of testing these antibodies fit with the inferences of the model? Explain. (“Iso” is a 
negative control, MIP is MIP-1β.)


e) How are PCs necessarily related to one another with PCA? Do you see this relationship in Figure 2C? Based on this 
observation, what can you say about this relationship with PLSR? How are PLSR PCs geometrically defined with 
respect to one another? How would you expect Figure 2C would change if PCA were performed instead of PLSR?


Question 5 (10 points)

Ford et al, Clin Infect Dis, 2021, report that a SARS-CoV-2 rapid test has a sensitivity of roughly 80% in symptomatic 
people and 40% in asymptomatic people. The specificity was determined to be more than 99.5% in both cases.


a) Write out Bayes’ law, and then rewrite the equations to reflect the probability of an individual actually being SARS-
CoV-2 negative, given they had a negative test result.


b) The incidence of SARS-CoV-2 in Los Angeles on this day overall is about 1 in 10,000. 5% of those with related 
symptoms are turning out to be positive for SARS-CoV-2. Calculate the probability of both a symptomatic and 
asymptomatic person actually being negative, given they test negative on a rapid test. Is a tested symptomatic, or 
untested asymptomatic, individual more likely to be negative?


You are working on deploying a new medical device in hospitals and want to ensure there are sufficient backups in place 
in case one fails. To understand this, you want to model the amount of time it takes a device to fail. You expect that 
failures are at constant risk over time, and so you model the time to failure as an exponential distribution:


	  


c) You want to use   as your prior expectation of the failure rate (in units of years). So far, one device failed at 
1 year, and another at 2 years. Derive an expression for the posterior distribution of the failure rate.


d) For a certain failure rate, the Binomial distribution gives the probability of   devices out of   failing within a single 
year: 

  

Derive an expression for the chance of seeing 2 devices out of 4 fail in a given year, given your observations in (c).

p(t) = λe−λt

p(λ) = 1/λ

k n

p(n , k) = (n
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