
Midterm, BE188

February 15, 2018

Question 1 (15 pts)

a) Suppose that the probability density function of a distribution is 𝑝(𝑥) = 𝑎(1−𝑥3) for 0 < 𝑥 < 1 and 𝑝(𝑥) = 0
otherwise. Based on the properties of probability distributions, what is 𝑎? What is 𝑝(𝑥 < 1

2)?

1 = ∫
1

0
𝑝(𝑥)𝑑𝑥 = 𝑎 ∫

1

0
(1 − 𝑥3)𝑑𝑥, 𝑎 = 4

3

𝑝(𝑥 < 1
2) = ∫

1/2

0
𝑝(𝑥)𝑑𝑥 = 31

48
b) What is the mean of this distribution?

𝜇 = ∫
1

0
𝑥𝑝(𝑥)𝑑𝑥 = 2

5
c) Sketch the PDF. How would you qualitatively describe the skew of this distribution? What does this mean about
values as compared to the mean? Will show plot in class. Skewed positively. Most values are greater than the
mean.
d) What are three things (total) you can say about the sampling distributions of the mean for 𝑁 = 1 and 𝑁 = 5?
(1) The sampling distribution for N=1 is the same as the original distribution. (2) The sampling distribution for N=5
tends towards a normal distribution. (3) The variance of the sampling distribution for N=5 is less than that for N=1.
e) How could you test whether a set of points follow this distribution? (Very briefly describe.) You could use a
KS-test.

Question 2 (20 pts)

You are designing a medical device to provide measurements of blood oxygenation from skin spectroscopy mea-
surements performed on the wrist. You know that the device provides a voltage that is proportional to blood
oxygenation, but have to calibrate it for each patient to values measured separately.
a) What method could you use to quickly determine this conversion factor from your calibration points? Oridinary
least squares.
b) Your team asks you to provide design a scheme whereby the device provides feedback as to whether
new calibration points would be helpful. How could you determine this from the calibration points you have
([(𝑉1, 𝑂1), (𝑉2, 𝑂2), (𝑉3, 𝑂3), …]) so far? You could bootstrap your model using all of the points you have been
given so far, and look at the distribution of conversion values you obtain. When this falls below a certain threshold
you have enough calibration points.
c) You have many calibration points (say N > 30), so you know that you can ignore variance in the model (i.e. if you
ran bootstrapping, your 𝛽 terms come out as virtually identical). What can you say about your confidence in where
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new calibration points will be distributed? We can expect new points to fall within a normal distribution around
the line of prediction. That normal distribution will have a mean of 0 and standard deviation equal to the standard
deviation of the residual during fitting.

d) A teammember suggests that the voltage-oxygenation relationship is log-linear instead of linear, and so suggests
using log(𝑉 ) instead. When would this be alright? What is an alternative approach? Are there any concerns
with calculating the answer in either case? This would be alright iff the error can be expected to be log-normally
distributed. If not, an alternative approach would be NNLSQ, using 𝑦 = log(𝑉 ) as the relationship. One concern
with this is it’s not guaranteed to give the globally optimal answer.

e) In version 1 of the device you used a single value as input, calculated from two wavelengths outside of your
model. In version 2 your team is interested in whether the full spectroscopy data (200 wavelengths simultaneously)
can be used for a more reliable measurement. You’re allowed to require up to 20 calibration points. Describe how
you would use these to calibrate your model. What assumptions are you making? How would you compare version
2 to version 1? You could use PLSR, in effect assuming that the covariance between the spectroscopy data and
blood oxygenation will be most useful. You would build a model with the matrix of spectroscopy data by calibration
point as input, and a vector of calibration points as output. You could compare the two model versions by evaluating
their crossvalidation performance.

Question 3 (15 pts)

A mammogram is a diagnostic imaging test for cancer with a sensitivity and specificity of roughly 80% and 95%,
respectively. A completely healthy, asympomatic 40 year-old woman shows a positive test and is recommended
for a biopsy. The incidence of breast cancer for her age is roughly 1 per 1000 women.

a)Write out Bayes’ law, and rewrite the equation for the probability of the woman having a tumor given her positive
test.

𝑝(𝐴 ∣ 𝐵) = 𝑝(𝐵 ∣ 𝐴)𝑝(𝐴)
𝑝(𝐵)

𝑝(tumor ∣ positive test) = 𝑝(positive test ∣ tumor)𝑝(tumor)
𝑝(positive test)

b) Sensitivity is true positives over all positives, while specificity is true negatives over all negatives. Therefore, the
false positive rate is 1 − specificity and the false negative rate is 1 − sensitivity. How many false and true positives
are expected in a cohort of 1000 tests?

False positives: 999 × 0.05 = 49.95. True positives: 1 × 0.8 = 0.8.
c) Calculate the probability of the woman having breast cancer, given her positive test result.

𝑝(tumor ∣ positive test) = 1 × 0.8
1 × 0.8 + 999 × 0.05 = 0.8

0.8 + 49.95 = 1.57%

If a data point 𝑦 follows the Poisson distribution with rate parameter 𝜃, then the probability of a single observation
𝑦 is 𝜃𝑦𝑒−𝜃

𝑦! , for 𝑦 = 0, 1, 2, …. You are given data points [0, 1, 0, 0, 1] independently drawn from a Poisson
distribution with parameter 𝜃. Your prior for 𝜃 is 𝑝(𝜃) = 𝜃−2.

d) Write down the log-likelihood of the data as a function of 𝜃.

𝑝(data ∣ 𝜃) = (𝑒−𝜃)3 (𝜃𝑒−𝜃)2 = 𝜃2𝑒−5𝜃

log(𝑝(data ∣ 𝜃)) = 2 log(𝜃) − 5𝜃
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e) Write out the expression for the Bayesian expectation for the next value to be 𝛼, given these previous observa-
tions. You only need to write down the expression, not integrate it.

𝑝(𝜃 ∣ data) = 𝑝(data ∣ 𝜃)𝑝(𝜃) = 𝜃2𝑒−5𝜃𝜃−2 = 𝑒−5𝜃

Normalizing the probability by:

𝑝(∀) = 𝑏 ∫
∞

0
𝑒−5𝜃𝑑𝜃 = 1, 𝑏 = 5

𝑝(𝛼) = 𝑏 ∫
∞

0

𝜃𝛼𝑒−𝜃

𝛼! 𝑒−5𝜃𝑑𝜃

𝑝(𝛼) = 5
𝛼! ∫

∞

0
𝜃𝛼𝑒−6𝜃𝑑𝜃

Question 4 (20 pts)

a) What is crossvalidation and what does it evaluate? Crossvalidation is the process by which one simulates the
existance of new data by leaving out a portion of a data set, training a model on the remaining portion, then eval-
uating the model’s ability to predict data not previously observed (held out). In this way it evaluates the prediction
performance of a model.

b) Outline the steps to performing crossvalidation. (1) Leave out a portion of data. (2) Fit a model from scratch, in
no way based on the left out data. (3) Compare the model to the left out portion. (4) Repeat with a new portion of
data left out.

c) How do predictions from crossvalidation necessarily differ from fitting a full model? When performing crossvali-
dation, one’s model will necessarily be trained on a reduced number of data points. Therefore, crossvalidation will
overestimate the prediction error.

d) Why are multiple folds necessary? Without multiple folds, the model error is dependent upon exactly which
points were left out as the validation set. Averaging over multiple left out sets minimizes the contribution of test set
selection variance.

e) What does bootstrapping pretend to do with your data? Bootstrapping pretends to repeatedly build an entirely
new dataset of identical size from the same underlying distribution.

f) Outline the steps for performing bootstrapping. (1) Resample one’s original dataset with replacement (allowing
for duplicate observations). (2) Build a model. (3) Record the built model. (4) Repeat the process a large number of
times to build a distribution of models.

Question 5 (15 pts)

Lek et. al. examined the protein-coding variation in 60,706 humans. In part of their analysis they presented their
data as a principal components plot as shown.

a) What are three benefits decomposition methods provide? (1) Improved interpretability. (2) Reduced noise in
most cases. (3) p is reduced relative to n.

b) The dataset includes each individual as a row (observation) and each protein-coding variant as a column (vari-
able). Is this a scores or loading plot? Scores plot.

c) A coding variant is exclusively present in individuals of east asian descent. Would it be represented in the scores
or loading plot? Where would it be? This would be represented on the loadings plot, since that is the plot that
shows input variables. We should expect that the variant would have a negative loading along PC2, and probably
little loading along PC3.
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Figure 1: Lek et al, Nature, 2016; Figure 1

d) Does this plot indicate which group is most different from the others? If so, which one? No. We don’t know how 
much variation in the dataset is presented here. We definitely know that this plot does not even show the axis 
along which the majority of variation occurs, since PC1 is absent.

e) Would the location of each group change if there were 100X fewer individuals of east asian descent present 
in the data? Justify your answer. Yes. Both the scores and loadings matrices are dependent upon all the points 
in the original matrix, since changing any one point will change the directions of maximal variance. Reducing 
representation of east asians in this analysis would reduce the contribution of the axis that is PC 2 here.

f) Your colleague accidentally scaled the variables by standard error instead of standard deviation before running 
PCA. How would the loadings and scores change? This would not change the directions of maximal variance, and 
so the directions of the loadings would not change. In fact, the loadings matrix would not change at all. The 
scores magnitudes would change since the magnitude of variance has changed.

Question 6 (15 pts)

Kim et. al. use partial least squares regression to interpret the relationship between signaling factors and mammary
epithelial cell migration before and after a gene expression program. To do so, they regress signaling measurements
against migration speed (Y).

more responsive to EGF treatment. This is not necessarily
surprising, because it is appreciated that receptor expression
changes (whether at mRNA or protein level) alone are typically
not predictive of associated activity or inhibitor effectiveness;
a prominent instance of this is the lack of correlation of EGFR
expression in patient tumors with anti-EGFR kinase inhibitor
efficacy (e.g. (36)). Thus, assays that focus on receptor ex-
pression levels may not by themselves effectively identify key
targets for therapeutic intervention.

The resulting activation profiles showed diverse kinetics
across individual signals that were growth factor- and EMT
state-dependent. Basal phosphorylation levels were depen-
dent on the EMT state, with EGFR, Met, Erk, Src, !-catenin,
HSP27, and IRS-1 displaying significantly higher initial phos-
phorylation in epithelial cells, but Akt, GSK3"/!, PKC#, PLC$,
and JNK displaying higher phosphorylation levels in mesen-
chymal cells (Fig. 3B). Dynamic changes in JNK, IRS-1, Src,
HSP27, GSK3"/!, and !-catenin phosphorylation after
growth factor treatment were cell-state specific and corre-
lated with their initial phosphorylation levels (Fig. 3C). How-
ever, activation of PKC# and PLC$ along with EGFR canonical
pathways Erk and Akt were relatively growth factor-depen-
dent and insensitive to EMT state in most cases (Fig. 3C). Visual
inspection of signal differences across the diverse treatments
and contexts offered little insight into which signals contribute
most significantly to the profoundly different EMT-dependent
migratory responses. The consequent implication is that cells
must quantitatively integrate the activities of multiple signaling
pathways to generate robust decisions concerning context- and
treatment-dependent migration responses.

Partial Least-Squares Regression Model Accounts for Di-
verse Motility Behavior Across Phenotypic Modes and Growth
Factor Treatments—To understand this quantitative mul-

tipathway integration, we applied PLSR to the signaling data
set to correlate the intracellular signaling activities to the
phenotypic response of the cells and evaluate the ability of
intracellular signaling nodes to predict the disparate EMT
motility response (Fig. 4). Despite likely differences in which
underlying biophysical processes (e.g. lamellipod protrusion,
cytoskeletal contraction, and cell and substratum adhesion
and de-adhesion) may be rate-limiting for the epithelial and
mesenchymal modes of migration, we found that a single
model comprised of two principal components (quantitative
combinations of the key signaling node phosphorylation
states, for both background activity {‘T0!} and growth factor
stimulation-induced activity integrated over the 1-hour time
period {‘Int’}) was able to account in a unified manner for
migration across both EMT states and all four growth factor
conditions. The Loadings and Scores plots shown in Fig. 4A
for this model illustrate some interesting insights. Phos-
phorylation state of some signaling nodes (GSK3"/!, PLC$,
PKC#, JNK, Akt) are more closely associated with mesenchy-
mal migration, whereas some others (!-catenin, IRS-1, Src)
are more closely associated with epithelial migration; for yet
some other signaling nodes (Erk, HSP27) growth factor-stim-
ulated activities are more closely associated with mesenchy-
mal migration whereas their constitutive activities are more
closely associated with epithelial migration. Thus, there is no
individual signal that is uniquely associated with either migra-
tion mode, nor is solely stimulated signaling the crucial deter-
mining feature. Nonetheless, the quantitative combination of
these signals is able to account for the entire scope of be-
havior comprehensively, as Fig. 4B demonstrates leave-one-
out cross-validation of this two-component model. Basal
phospho-signal levels were found to be important for predic-
tion of motility in conjunction with the dynamic treatment-
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FIG. 4. A multivariate partial least squares regression model captures signaling metrics contributing most to the prediction of both
epithelial and mesenchymal cells. A PLSR model has been constructed using the initial phosphorylation levels and those integrated over 60
min of the 14 signals described in Fig. 3 across serum-free, EGF, HRG, IGF, and HGF treatments. A, Projection of loadings (left) and scores
(right) onto the first two principal components. Loadings of individual signaling metrics (Int " integral of phosphorylation; T0 " initial
phosphorylation) are plotted in black. Loading of cell speed metric is plotted in red. Scores of each growth factor treatment are plotted black
for epithelial and red for mesenchymal cells. B, Leave-one-out cross-validation of the PLSR model with cell speeds predicted by the two
principal component model versus experimentally measured cell speeds.

Motility Signaling Network State in EMT

Molecular & Cellular Proteomics 10.11 10.1074/mcp.M111.008433–7

Figure 2: Kim et al, Mol Cell Prot, 2011; Figure 4

a)What processing was likely necessary before using the data to build the model? The dataset needed to be mean
centered and unit variance scaled (z-scored).

b)What effect to you predict an HSP27 inhibitor would have onmeasured cell speed? This should decrease “HSP27
Int” and “HSP27 T0”.
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An HSP27 inhibitor should decrease cell speed, assuming no other variables change.

c) How do you expect EGF stimulation to influence Erk activation (“Erk Int”) as compared to control (“SF”)? EGF
stimulation moves positively along both PC1 and PC2 as compared to SF. Because “Erk Int” is positively weighted
along both PC1 and PC2, I expect that it increases upon EGF stimulation.

d) How do the R2Y and Q2Y quantities differ? What can you say about how each quantity varies in general with
respect to the number of components? R2Y evaluates the Y variance explained by the model when directly fit, while
Q2Y evaluates it upon cross-validation. R2Y will always increase with more components, while Q2Y may increase
or decrease.

e) You built a PLSR model and prepare the data by z-scoring each column/variable, then wish to crossvalidate the
model. Do you need to z-score again for each fold? Why/why not? You do need to z-score the separately within
each fold. This is because z-scoring only before cross-validation “leaks” information about the left out observations.
For example, if you leave out an observation that is lower than the average, the average of the training data will be
above zero.
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