https://xkcd.com/1132/
Bayes’ theorem may be derived from the definition of conditional probability: \[P(A\mid B)={\frac {P(B\mid A)\,P(A)}{P(B)}},\;\text{if}\; P(B)\neq 0\] because \[P(B\cap A) = P(A\cap B)\] \[\Rightarrow P(A\cap B)=P(A\mid B)\,P(B)=P(B\mid A)\,P(A)\] \[\Rightarrow P(A\mid B)={\frac {P(B\mid A)\,P(A)}{P(B)}},\;\text{if}\; P(B)\neq 0\]
Likelihood | Conjugate prior distribution | Prior hyperparameter | Posterior hyperparameters |
---|---|---|---|
Bernoulli | Beta | \(\alpha, \beta\) | \(\alpha + \sum x_i, \beta + n - \sum x_i\) |
Multinomial | Dirichlet | \(\alpha\) | \(\alpha + \sum x_i\) |
Poisson | Gamma | \(\alpha, \beta\) | \(\alpha + \sum x_i, \beta + n\) |
Facts:
Questions: