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Week 2, Lecture 2 - Fitting And Regression

Aaron Meyer
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Project Proposals

In this project, you have two options for the general route you can 

take:

1. Reimplement analysis from the literature.

2. New, exploratory analysis of existing data.

More details in final project guidelines.
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Project Proposals

The proposal should be less than two pages and describe the following 

items:

I Why the topic you chose is interesting
I Demonstrate that your project fits the criteria above
I What overall approach do you plan to take for the project and 

why
I Demonstrate that your project can be finished within a month
I Estimate the difficulty of your project

We are available to discuss your ideas whenever you are ready, 

and you should discuss your idea with us prior to submitting 

your proposal.

Recommend an early start—the earlier you finalize a proposal the 

sooner you can begin the project.
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Goal Of Fitting

I Fitting is the process of comparing a model to a compendium 

of data
I After fitting, we will have a model that explains existing data 

and can predict new data
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Process of Fitting

The process of fitting is nothing more than finding the maximum 

likelihood distribution of models for a set of points.

The key factor is how one defines the problem—i.e. how the distri-

bution is described.
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Caveats

I Any fitting result is highly dependent upon the correctness of 

the model
I Successful fitting requires concordance between the model and 

data
I Too little data and a model is underdetermined
I Unaccounted for variables can lead to systematic error

Since all models are wrong the scientist cannot obtain a 

“correct” one by excessive elaboration. On the contrary 

following William of Occam he should seek an economical 

description of natural phenomena. Just as the ability to 

devise simple but evocative models is the signature of the 

great scientist so overelaboration and overparameterization 

is often the mark of mediocrity. ~George Box, J American 

Stat Assoc, 1976
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Any Fitting Is Dependent On The Correctness Of The 

Model
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Fitting does not happen in a vacuum!
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Ordinary Least Squares

I Probably the most widely used estimation technique.
I Based on extending the maximum likelihood estimate of a 

distribution.
I Model assumes output quantity is linear combination of inputs.
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Ordinary Least Squares

If we have a vector of n observations y, our predictions are going to 

follow the form:

y = Xβ + ε

Here X is a n× p structure matrix, β is a p-dimensional vector with 

the parameters of our model, and ε = (ε1, ε2, ...εn)
′ is the noise 

present in the model.
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Ordinary Least Squares

y = Xβ + ε

ε is usually handled to be uncorrelated random components with 

constant variance σ2:

ε ∼
(
0, σ2I

)
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Ordinary Least Squares

Single variable case

The structure matrix is little more than the data, sometimes trans-

formed, usually with an offset. So, another way to write:

y = Xβ + ε

would be:

y = m1x1 +m2x2 . . .+ b+ ε
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Ordinary Least Squares

Single variable case

y = mx + b+ ε

The values of m and b that minimize the distance from y are optimal, 

and they don’t depend on ε.
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Ordinary Least Squares

Gauss and Markov in the early 1800s identified that the least squares 

estimate of β, β̂, is:

β̂ = arg min
β

‖y − Xβ‖2
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Ordinary Least Squares

β̂ = arg min
β

‖y − Xβ‖2

can be directly calculated by:

β̂ = S−1X′y

where

S = X′X
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Ordinary Least Squares

β̂ is the maximum likelihood estimate of β, and has covariance matrix 

σ2S−1:

β̂ ∼
(
β, σ2S−1

)
In the normal case (when our assumptions hold), β̂ is an unbiased 

estimator of β. Making these calculations tractable for larger data 

sets used to be a challenge but is now trivial.
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Ordinary Least Squares

Likelihood of Model

−n

2
log(σ2)− 1

2σ2

n∑
i=1

(yi − xiβ)
2

therefore, only considering β (the only factor that influences predic-

tions), we need to minimize:

n∑
i=1

(yi − xiβ)
2

Exactly how we calculate β!
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Ordinary Least Squares

What might be some advantages of a method such as this?



19 / 41

Ordinary Least Squares

What are some of the assumptions?

What are the implications of these assumptions not holding?

What are some downsides?
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Application: Paternal de novo mutations

Questions:

I Where do de novo mutations arise?
I Are there factors that influence the rate of de novo mutations 

from one generation to another?



21 / 41

Application: Paternal de novo mutations

Figure: By Rdbickel - Own work, CC BY-SA 4.0, 

https://commons.wikimedia.org/w/index.php?curid=49599354
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Application: Paternal de novo mutations

Figure: Kong et al, Nature, 2012
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Application: Paternal de novo mutations

Figure: Kong et al, Nature, 2012
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Implementation

sklearn provides a very basic function for ordinary least squares.

I sklearn.linear_model.LinearRegression

I fit_intercept: Should an intercept value be fit?
I normalize: Should the input variables be mean and variance 

scaled?

I No tests for significance/model performance included.
I We’ll discuss evaluating the model in depth later.

Or there’s an even more bare function in numpy numpy.linalg.lstsq.

I Takes input variables a and b.
I Solves the equation ax = b by computing a vector x that 

minimizes the Euclidean 2-norm ‖b− ax‖2.
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Implementation

import sklearn as sk, matplotlib.pyplot as plt

lr = sk.linear_model.LinearRegression()

boston = sk.datasets.load_boston()

y = boston.target

lr.fit(boston.data, y)

predicted = lr.predict(boston.data)

fig, ax = plt.subplots()

ax.scatter(y, predicted, edgecolors=(0, 0, 0))

ax.plot([y.min(), y.max()], [y.min(), y.max()], 'k--', lw=4)

ax.set_xlabel('Measured')

ax.set_ylabel('Predicted')

plt.show()
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Implementation
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Non-Linear Least Squares

Non-Linear Least Squares makes similar assumptions to ordinary least 

squares, but for arbitrary functions. Thus, instead of following the 

form:

y = Xβ + ε

Our input-output relationship is:

y = f(X, β) + ε

for the same construction of ε.
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Transformation

NNLSQ used to be mostly performed by transforming one’s data 

into a linear model.

E.g. taking the ratio of variables, or log-transforming them.

This is now considered bad practice.

Why?
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Non-Linear Least Squares

Algorithms

We again need to solve for β to minimize the sum of squared error:

I There are many methods to solve these problems, and finding 

the true minimum is not a trivial task.
I We’re not going to cover how these algorithms work in depth.
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Non-Linear Least Squares

Algorithms

One property we can take advantage of is that the gradient of the 

SSE w.r.t. β at the minimum is zero (ri is the residual of the ith 

point):

∂S

∂βj
= 2

∑
i

ri
∂ri
∂βj

= 0

I ∂ri
∂βj

 is a function of both the nonlinear function and the data.

I This can be expanded out through a first-order Taylor 

approximation.
I Doing so essentially performs ordinary least squares around the 

current point, for the linearized function.
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Non-Linear Least Squares

Algorithms

∂S

∂βj
= 2

∑
i

ri
∂ri
∂βj

= 0

I ∂ri
∂βj

 is a function of both the nonlinear function and the data.

I This can be expanded out through a first-order Taylor 

approximation.
I Doing so essentially performs ordinary least squares around the 

current point, for the linearized function.
I ∂ri

∂βj
= −Jij , where J is the Jacobian of the function.

I Many NNLSQ solvers require J for this reason: can be 

approximated by finite differences.
I Probably the most common method, Gauss-Newton, uses this 

property with Newton’s method.
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Non-Linear Least Squares

Algorithms - Key Takaways

I Unlike ordinary least squares, no guarantee about finding the 

optimal solution.
I Depending upon the data and model, there may be many local 

minima.
I Exactly equivalent to shifting normal distributions up and down 

around one’s data.
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Implementation

SciPy’s scipy.optimize.least_squares is a very capable imple-

mentation.

I The main necessary parameters are:
I fun, the function
I x0, an initial guess for the parameter values

I Note that fun should return a vector of the residuals
I So it should handle all the data itself
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NNLSQ Example - Binding Data

Let’s say we’re looking at a protein-protein interaction such as this:

plt.semilogx(X, Y,'.');

plt.xlabel('Concentration [nM]')

plt.ylabel('Binding')
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NNLSQ Example - Binding Data

We can predict the amount of binding we’d observe from a single-site 

binding model:

def klotz1(k1, lig):

return (k1*lig)/(1 + k1*lig)
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NNLSQ Example - Binding Data

plt.semilogx(X,klotz1(1.,X),'.')

plt.xlabel('Concentration [nM]')

plt.ylabel('Binding')
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NNLSQ Example - Binding Data

SciPy asks for the residuals at each fitting point, so we need to 

convert a prediction to that:

def ls_obj_k1(k1, ligs, data):

return(data - klotz1(k1,ligs))
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NNLSQ Example - Binding Data
sp.optimize.least_squares(ls_obj_k1, 1., args=(X,Y))

# --------

 active_mask: array([ 0.])

 cost: 0.0086776496708916573

 fun: array([ 4.79e-05, 9.00e-05, -1.09e-04,

8.04e-04, -9.67e-04, 3.85e-03,

4.61e-03, 2.34e-03, 2.36e-02,

9.64e-03, -2.48e-02, 1.93e-02,

-4.93e-02, 5.54e-02, -3.66e-02,

2.97e-03, 3.39e-02, -8.74e-02])

 grad: array([ -9.57228474e-09])

 jac: array([[-0.00099809],

 [-0.00199235],

 [-0.0039695 ],

# ...

 [-0.03119024],

 [-0.01608763],

 [-0.00817133]])

 message: '`gtol` termination condition is satisfied.'

 nfev: 4

 njev: 4

 optimality: 9.5722847420895082e-09

 status: 1

 success: True

 x: array([ 0.95864059])
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Generalized Linear Model

What if the error term isn’t Gaussian?

I In many cases linear regression can be inappropriate
I E.g. A measurement that is Poisson distributed
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Questions

I Would you expect the confidence interval of your model to be 

larger or smaller than the confidence interval of prediction?
I Given the binding data presented here, do you think a least 

squares model is most appropriate?
I How might you test whether your data fits the model you’ve 

specified?
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Further Reading

I Computer Age Statistical Inference, Chapter 8
I sklearn: Linear Models

https://web.stanford.edu/~hastie/CASI_files/PDF/casi.pdf
https://scikit-learn.org/stable/modules/linear_model.html

