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Week 2, Lecture 3 - Fitting & Regression Redux, 

Regularization

Aaron Meyer
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Outline

I Administrative Issues
I Fitting Regularization

I Lasso
I Ridge regression
I Elastic net

I Some Examples

Based on slides from Rob Tibshirani.
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The Bias-Variance Tradeoff

The Bias-Variance Tradeoff
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Estimating β

I As usual, we assume the model:

y = f(z) + ε, ε ∼ N (0, σ2)

I In regression analysis, our major goal is to come up with some 

good regression function

f̂(z) = zᵀβ̂

I So far, we’ve been dealing with β̂ls, or the least squares 

solution:
I β̂ls has well known properties (e.g., Gauss-Markov, ML)

I But can we do better?
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Choosing a good regression function

I Suppose we have an estimator

f̂(z) = zᵀβ̂

I To see if this is a good candidate, we can ask ourselves two 

questions:

1. Is β̂ close to the true β?

2. Will f̂(z) fit future observations well?

I These might have very different outcomes!!
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Is β̂ close to the true β?

I To answer this question, we might consider the mean squared 

error of our estimate β̂:
I i.e., consider squared distance of β̂ to the true β:

MSE(β̂) = E
[∥∥∥β̂ − β

∥∥∥2] = E[(β̂ − β)ᵀ(β̂ − β)]

I Example: In least squares (LS), we know that:

E[(β̂
ls − β)ᵀ(β̂

ls − β)] = σ2tr[(ZTZ)−1]
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Will f̂(z) fit future observations well?

I Just because f̂(z) fits our data well, this doesn’t mean that it 

will be a good fit to new data
I In fact, suppose that we take new measurements y′i at the 

same zi’s:
(z1, y′

1), (z2, y′
2), ..., (zn, y′

n)

I So if f̂(·) is a good model, then f̂(zi) should also be close to 

the new target y′i
I This is the notion of prediction error (PE)
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Prediction error and the bias-variance tradeoff

I So good estimators should, on average have, small prediction 

errors
I Let’s consider the PE at a particular target point z0:

I PE(z0) = σ2
ε +Bias2(f̂(z0)) + V ar(f̂(z0))

I Not going to derive, but comes directly from previous definitions

I Such a decomposition is known as the bias-variance tradeoff
I As model becomes more complex (more terms included), local 

structure/curvature is picked up
I But coefficient estimates suffer from high variance as more 

terms are included in the model

I So introducing a little bias in our estimate for β might lead to 

a large decrease in variance, and hence a substantial decrease 

in PE
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Depicting the bias-variance tradeoff

Part I: The Bias-Variance Tradeoff

Depicting the bias-variance tradeoff
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Figure: A graph depicting the bias-variance tradeoff.
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Figure: A graph depicting the bias-variance tradeoff.
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Ridge Regression

Ridge Regression



11 / 38

Ridge regression as regularization

I If the βj ’s are unconstrained…
I They can explode
I And hence are susceptible to very high variance

I To control variance, we might regularize the coefficients
I i.e., Might control how large the coefficients grow

I Might impose the ridge constraint (both equivalent):
I minimize 

∑n
i=1(yi − βᵀzi)2 s.t.

∑p
j=1 β

2
j ≤ t

I minimize (y − Zβ)ᵀ(y − Zβ) s.t.
∑p

j=1 β
2
j ≤ t

I By convention (very important!):
I Z is assumed to be standardized (mean 0, unit variance)
I y is assumed to be centered
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Ridge regression: l2-penalty

I Can write the ridge constraint as the following penalized

residual sum of squares (PRSS):

PRSS(β)ℓ2 =
n
∑

i=1

(yi − z⊤i β)2 + λ

p
∑

j=1

β2
j

= (y − Zβ)⊤(y − Zβ) + λ||β||22

I Its solution may have smaller average PE than β̂
ls

I PRSS(β)l2 is convex, and hence has a unique solution
I Taking derivatives, we obtain:

δPRSS(β)l2
δβ

= −2ZT (y − Zβ) + 2λβ



13 / 38

The ridge solutions

I The solution to PRSS(β̂)l2 is now seen to be:

β̂ridge
λ = (ZᵀZ + λIp)−1Zᵀy

I Remember that Z is standardized
I y is centered

I Solution is indexed by the tuning parameter λ (more on this 

later)
I Inclusion of λ makes problem non-singular even if ZᵀZ is not 

invertible
I This was the original motivation for ridge regression (Hoerl and 

Kennard, 1970)
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Tuning parameter λ

I Notice that the solution is indexed by the parameter λ
I So for each λ, we have a solution
I Hence, the λ’s trace out a path of solutions (see next page)

I λ is the shrinkage parameter
I λ controls the size of the coefficients
I λ controls amount of regularization
I As λ decreases, we obtain the least squares solutions
I As λ increases, we have β̂ridge

λ=0 = 0 (intercept-only model)
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Ridge coefficient paths

I The λ’s trace out a set of ridge solutions, as illustrated below

Part II: Ridge Regression

1. Solution to the ℓ2 Problem and Some Properties
2. Data Augmentation Approach
3. Bayesian Interpretation
4. The SVD and Ridge Regression

Ridge coefficient paths

The λ’s trace out a set of ridge solutions, as illustrated below
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Figure: Ridge coefficient path for the diabetes data set found in
the lars library in R.

Statistics 305: Autumn Quarter 2006/2007 Regularization: Ridge Regression and the LASSO

Figure: Ridge coefficient path for the diabetes data set found in the lars

library in R.
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Choosing λ

I Need disciplined way of selecting λ
I That is, we need to “tune” the value of λ
I In their original paper, Hoerl and Kennard introduced ridge 

traces:
I Plot the components of β̂ridge

λ  against λ
I Choose λ for which the coefficients are not rapidly changing and 

have “sensible” signs
I No objective basis; heavily criticized by many

I Standard practice now is to use cross-validation (next lecture!)
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A few notes on ridge regression

I The regularization decreases the degrees of freedom of the 

model
I So you still cannot fit a model with more degrees of freedom 

than points

I This can be shown by examination of the smoother matrix
I We won’t do this—it’s a complicated argument
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How do we choose λ?

I We need a disciplined way of choosing λ
I Obviously want to choose λ that minimizes the mean squared 

error
I Issue is part of the bigger problem of model selection
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K-Fold Cross-Validation

I A common method to determine λ is K-fold cross-validation.
I We will discuss this next lecture.
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Plot of CV errors and standard error bands

Part III: Cross Validation
1. K -Fold Cross Validation
2. Generalized CV

Plot of CV errors and standard error bands
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Figure: Cross validation errors from a ridge regression example on spam
data.

Statistics 305: Autumn Quarter 2006/2007 Regularization: Ridge Regression and the LASSO

Figure: Cross validation errors from a ridge regression example on spam 

data.
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The LASSO

The LASSO
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The LASSO: l1 penalty

I Tibshirani (J of the Royal Stat Soc 1996) introduced the

LASSO: least absolute shrinkage and selection operator
I LASSO coefficients are the solutions to the l1 optimization 

problem:

minimize (y − Zβ)T (y − Zβ) s.t.
p∑

j=1

‖βj‖ ≤ t

I This is equivalent to loss function:

PRSS(β)l1 =

n∑
i=1

(yi − zTi β)2 + λ

p∑
j=1

‖βj‖

= (y − Zβ)T (y − Zβ) + λ ‖β‖1
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λ (or t) as a tuning parameter

I Again, we have a tuning parameter λ that controls the amount 

of regularization
I One-to-one correspondence with the threshhold t:

I recall the constraint:

p∑
j=1

= ‖βj‖ ≤ t

I Hence, have a “path” of solutions indexed by t

I If t0 =
∑p

j=1

∥∥∥β̂ls
j

∥∥∥ (equivalently, λ = 0), we obtain no 

shrinkage (and hence obtain the LS solutions as our solution)
I Often, the path of solutions is indexed by a fraction of shrinkage 

factor of t0
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Sparsity and exact zeros

I Often, we believe that many of the βj ’s should be 0
I Hence, we seek a set of sparse solutions
I Large enough λ (or small enough t) will set some coefficients 

exactly equal to 0!
I So LASSO will perform model selection for us!
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Computing the LASSO solution

I Unlike ridge regression, β̂lasso
λ  has no closed form λ

I Original implementation involves quadratic programming 

techniques from convex optimization
I But Efron et al, Ann Statist, 2004 proposed LARS (least angle 

regression), which computes the LASSO path efficiently
I Interesting modification called is called forward stagewise
I In many cases it is the same as the LASSO solution
I Forward stagewise is easy to implement: 

https://www-stat.stanford.edu/~hastie/TALKS/nips2005.pdf

https://www-stat.stanford.edu/~hastie/TALKS/nips2005.pdf
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Forward stagewise algorithm

I As usual, assume Z is standardized and y is centered
I Choose a small ε. The forward-stagewise algorithm then 

proceeds as follows:

1. Start with initial residual r = y, and β1 = β2 = . . . = βp = 0
2. Find the predictor Zj(j = 1, . . . , p) most correlated with r

3. Update βj = βj + δj , where δj = ε · sign〈r,Zj〉 = ε · sign(ZT
j r)

4. Set r = r − δjZj

5. Repeat from step 2 many times
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The LASSO, LARS, and Forward Stagewise paths

Part IV: The LASSO

The LASSO, LARS, and Forward Stagewise paths
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Figure: Comparison of the LASSO, LARS, and Forward Stagewise
coefficient paths for the diabetes data set.
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Figure: Comparison of the LASSO, LARS, and Forward Stagewise 

coefficient paths for the diabetes data set.
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Comparing LS, Ridge, and the LASSO

I Even though ZTZ may not be of full rank, both ridge 

regression and the LASSO admit solutions
I We have a problem when p � n (more predictor variables than 

observations)
I But both ridge regression and the LASSO have solutions
I Regularization tends to reduce prediction error
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More comments on variable selection

I Now suppose p � n
I Of course, we would like a parsimonious model (Occam’s 

Razor)
I Ridge regression produces coefficient values for each of the 

p-variables
I But because of its l1 penalty, the LASSO will set many of the 

variables exactly equal to 0!
I That is, the LASSO produces sparse solutions

I So LASSO takes care of model selection for us
I And we can even see when variables jump into the model by 

looking at the LASSO path
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Variants

I Zou and Hastie (2005) propose the elastic net, which is a 

convex combination of ridge and the LASSO
I Paper asserts that the elastic net can improve error over LASSO
I Still produces sparse solutions
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High-dimensional data and underdetermined systems

I In many modern data analysis problems, we have p � n
I These comprise “high-dimensional” problems

I When fitting the model y = zᵀβ, we can have many solutions
I i.e., our system is underdetermined

I Reasonable to suppose that most of the coefficients are exactly 

equal to 0
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But do these methods pick the right/true variables?

I Suppose that only S elements of β are non-zero
I Now suppose we had an “Oracle” that told us which 

components of the β = (β1, β2, . . . , βp) are truly non-zero
I Let β∗ be the least squares estimate of this “ideal” estimator:

I So β∗ is 0 in every component that β is 0
I The non-zero elements of β∗ are computed by regressing y on 

only the S important covariates

I It turns out we get really close to this cheating solution without 

cheating!
I Candes & Tao. Ann Statist. 2007.
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Example - Predicting Drug Response

LETTER
doi:10.1038/nature11003

The Cancer Cell Line Encyclopedia enables predictive
modelling of anticancer drug sensitivity
Jordi Barretina1,2,3{*, Giordano Caponigro4*, Nicolas Stransky1*, Kavitha Venkatesan4*, Adam A. Margolin1{*, Sungjoon Kim5,
Christopher J. Wilson4, Joseph Lehár4, Gregory V. Kryukov1, Dmitriy Sonkin4, Anupama Reddy4, Manway Liu4, Lauren Murray1,
Michael F. Berger1{, John E. Monahan4, Paula Morais1, Jodi Meltzer4, Adam Korejwa1, Judit Jané-Valbuena1,2, Felipa A. Mapa4,
Joseph Thibault5, Eva Bric-Furlong4, Pichai Raman4, Aaron Shipway5, Ingo H. Engels5, Jill Cheng6, Guoying K. Yu6, Jianjun Yu6,
Peter Aspesi Jr4, Melanie de Silva4, Kalpana Jagtap4, Michael D. Jones4, Li Wang4, Charles Hatton3, Emanuele Palescandolo3,
Supriya Gupta1, Scott Mahan1, Carrie Sougnez1, Robert C. Onofrio1, Ted Liefeld1, Laura MacConaill3, Wendy Winckler1,
Michael Reich1, Nanxin Li5, Jill P. Mesirov1, Stacey B. Gabriel1, Gad Getz1, Kristin Ardlie1, Vivien Chan6, Vic E. Myer4,
Barbara L. Weber4, Jeff Porter4, Markus Warmuth4, Peter Finan4, Jennifer L. Harris5, Matthew Meyerson1,2,3, Todd R. Golub1,3,7,8,
Michael P. Morrissey4*, William R. Sellers4*, Robert Schlegel4* & Levi A. Garraway1,2,3*

The systematic translation of cancer genomic data into knowledge of
tumour biology and therapeutic possibilities remains challenging.
Such efforts should be greatly aided by robust preclinical model
systems that reflect the genomic diversity of human cancers and for
which detailed genetic and pharmacological annotation is available1.
Here we describe the Cancer Cell Line Encyclopedia (CCLE): a
compilation of gene expression, chromosomal copy number and
massively parallel sequencing data from 947 human cancer cell lines.
When coupled with pharmacological profiles for 24 anticancer
drugs across 479 of the cell lines, this collection allowed identification
of genetic, lineage, and gene-expression-based predictors of drug
sensitivity. In addition to known predictors, we found that plasma
cell lineage correlated with sensitivity to IGF1 receptor inhibitors;
AHR expression was associated with MEK inhibitor efficacy in
NRAS-mutant lines; and SLFN11 expression predicted sensitivity
to topoisomerase inhibitors. Together, our results indicate that large,
annotated cell-line collections may help to enable preclinical strati-
fication schemata for anticancer agents. The generation of genetic
predictions of drug response in the preclinical setting and their
incorporation into cancer clinical trial design could speed the emer-
gence of ‘personalized’ therapeutic regimens2.

Human cancer cell lines represent a mainstay of tumour biology and
drug discovery through facile experimental manipulation, global and
detailed mechanistic studies, and various high-throughput applica-
tions. Numerous studies have used cell-line panels annotated with both
genetic and pharmacological data, either within a tumour lineage3–5 or
across multiple cancer types6–12. Although affirming the promise of
systematic cell line studies, many previous efforts were limited in their
depth of genetic characterization and pharmacological interrogation.

To address these challenges, we generated a large-scale genomic data
set for 947 human cancer cell lines, together with pharmacological pro-
filing of 24 compounds across ,500 of these lines. The resulting collec-
tion, which we termed the Cancer Cell Line Encyclopedia (CCLE),
encompasses 36 tumour types (Fig. 1a and Supplementary Table 1; see
also http://www.broadinstitute.org/ccle). All cell lines were characterized
by several genomic technology platforms. The mutational status of
.1,600 genes was determined by targeted massively parallel sequencing,
followed by removal of variants likely to be germline events (Sup-
plementary Methods). Moreover, 392 recurrent mutations affecting 33

known cancer genes were assessed by mass spectrometric genotyping13

(Supplementary Table 2 and Supplementary Fig. 1). DNA copy number
was measured using high-density single nucleotide polymorphism arrays
(Affymetrix SNP 6.0; Supplementary Methods). Finally, messenger RNA
expression levels were obtained for each of the lines using Affymetrix
U133 plus 2.0 arrays. These data were also used to confirm cell line
identities (Supplementary Methods and Supplementary Figs 2–4).

We next measured the genomic similarities by lineage between CCLE
lines and primary tumours from Tumorscape14, expO, MILE and
COSMIC data sets (Fig. 1b–d and Supplementary Methods). For most
lineages, a strong positive correlation was observed in both chromo-
somal copy number and gene expression patterns (median correlation
coefficients of 0.77, range 5 0.52–0.94, P , 10215, for copy number, and
0.60, range 5 0.29–0.77, P , 10215, for expression, respectively; Fig. 1b,
c and Supplementary Tables 3 and 4), as has been described previ-
ously3–5,15. A positive correlation was also observed for point mutation
frequencies (median correlation coefficient 5 0.71, range 5 20.06–
0.97, P , 1022 for all but 3 lineages; Supplementary Fig. 5), even when
TP53 was removed from the data set (median correlation coefficient 5
0.64, range 5 20.31–0.97, P , 1022 for all but 3 lineages; Fig. 1d and
Supplementary Table 5). Thus, with relatively few exceptions (Sup-
plementary Information), the CCLE may provide representative genetic
proxies for primary tumours in many cancer types.

Given the pressing clinical need for robust molecular correlates of
anticancer drug response, we incorporated a systematic framework to
ascertain molecular correlates of pharmacological sensitivity in vitro.
First, 8-point dose–response curves for 24 compounds (targeted and
cytotoxic agents) across 479 cell lines were generated (Supplementary
Tables 1 and 6, and Supplementary Methods). These curves were
represented by a logistical sigmoidal function with a maximal effect
level (Amax), the concentration at half-maximal activity of the com-
pound (EC50), a Hill coefficient representing the sigmoidal transition,
and the concentration at which the drug response reached an absolute
inhibition of 50% (IC50).

Broadly active compounds, exemplified by the HDAC inhibitor
LBH589 (panobinostat), showed a roughly even distribution of Amax

and EC50 values across most cell lines (Fig. 2a). In contrast, the RAF
inhibitor PLX4720 had a more selective profile: Amax or EC50 values for
most cell lines could be categorized as ‘sensitive’ or ‘insensitive’ to

*These authors contributed equally to this work.

1The Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA. 2Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115,
USA. 3Center for Cancer Genome Discovery, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA. 4Novartis Institutes for Biomedical Research, Cambridge,
Massachusetts 02139, USA. 5Genomics Institute of the Novartis Research Foundation, San Diego, California 92121, USA. 6Novartis Institutes for Biomedical Research, Emeryville, California 94608, USA.
7Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA. 8Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA. {Present addresses:
Novartis Institutes for Biomedical Research, Cambridge, Massachusetts 02139, USA (J.B.); Sage Bionetworks, 1100 Fairview Ave. N., Seattle, Washington 98109, USA (A.A.M.); Department of Pathology,
Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA (M.F.B.).
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Example - Predicting Drug Response
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Figure 2 | Predictive modelling of pharmacological sensitivity using CCLE
genomic data. a, b, Drug responses for panobinostat (green) and PLX4720
(orange/purple) represented by the high-concentration effect level (Amax) and
transitional concentration (EC50) for a sigmoidal fit to the response curve
(b). c, Elastic net regression modelling of genomic features that predict
sensitivity to PD-0325901. The bottom curve indicates drug response,
measured as the area over the dose–response curve (activity area), for each cell
line. The central heat map shows the CCLE features in the model (continuous
z-score for expression and copy number, dark red for discrete mutation calls),
across all cell lines (x axis). Bar plot (left): weight of the top predictive features
for sensitivity (bottom) or insensitivity (top). Parentheses indicate features
present in .80% of models after bootstrapping. LOF, loss of function mutation;
nnMS, non-neutral missense mutation (Supplementary Methods).

d, Specificity and sensitivity (receiver operating characteristic curves) of cross-
validated categorical models predicting the response to a MEK inhibitor, PD-
0325901 (activity area). Mean true positive rate and standard deviation (n 5 5)
are shown when models are built using all lines (global categorical model, in
blue and orange), or within only melanoma lines (green). e, Activity area values
for panobinostat between cell lines derived from haematopoietic (n 5 61) and
solid tumours (n 5 387). The middle bar, median; box, inter-quartile range;
bars extend to 1.53 the inter-quartile range. f, Distribution of activity area
values for AEW541 relative to IGF1 mRNA expression. Orange dots, multiple
myeloma cell lines (n 5 14); blue dots, cell lines from other tumour types
(n 5 434). Box-and-whisker plots show the activity area or mRNA expression
distributions relative to each cell line type (line, median; box, inter-quartile
range), with bars extending to 1.53 the inter-quartile range.

LETTER RESEARCH
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Example - Predicting Drug Response

mechanistic biomarker for enhanced MEK inhibitor sensitivity in
this setting.

We also looked for markers predictive of response to several con-
ventional chemotherapeutic agents (Supplementary Fig. 7 and Sup-
plementary Table 6) and identified SLFN11 expression as the top
correlate of sensitivity to irinotecan (Fig. 4a), a camptothecin analogue
that inhibits the topoisomerase I (TOP1) enzyme. SLFN11 expression

also emerged as the top predictor of topotecan sensitivity (another
TOP1 inhibitor; Supplementary Figs 8 and 14). Overall, 12 of 16
lineages showed significant SLFN11 associations for topotecan or
irinotecan sensitivity (Pearson’s r $ 0.2, Supplementary Fig. 14b).
This finding was independently validated using data from the NCI-60
collection (Supplementary Fig. 15). SLFN11 knockdown did not affect
steady-state growth sensitivity profiles (Supplementary Fig. 14d–f).
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Figure 3 | AHR expression may denote a tumour dependency targeted by
MEK inhibitors in NRAS-mutant cell lines. a, Predictive features for PD-
0325901 sensitivity (using the ‘varying baseline’ activity area) in validated
NRAS-mutant cell lines. b, Growth inhibition curves for NRAS-mutant cell lines
expressing high (red) or low (blue) levels of AHR mRNA in the presence of the
MEK inhibitor PD-0325901. c, Relative AHR mRNA expression across a panel
of NRAS-mutant cell lines (arrows indicate cell lines where AHR dependency
was analysed). d–h, Proliferation of NRAS-mutant cell lines displaying high (d–
f) and low (g, h) AHR mRNA expression, after introduction of shRNAs against

AHR (red lines) or luciferase (blue lines). i, Left: proliferation of IPC-298 cells
(high AHR) after introduction of additional shRNAs against AHR (shAHR_1
and shAHR_4; green and purple lines, respectively) or luciferase (control shLuc;
blue line). Right: corresponding immunoblot analysis of AHR protein.
j, Equivalent studies as in i using SK-MEL-2 cells (high AHR). k, Endogenous
CYP1A1 mRNA expression in the neuroblastoma line CHP-212 or the
melanoma lines IPC-298 and SK-MEL-2 after exposure to vehicle (blue) or
MEK inhibitors (PD-0325901, green or PD-98059, purple). Error bars indicate
standard deviation between replicates, with n 5 12 (b), n 5 3 (c), n 5 6 (d–k).
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Figure 4 | Predicting sensitivity to topoisomerase I inhibitors. a, Elastic net
regression analysis of genomic correlates of irinotecan sensitivity is shown for
250 cell lines. b, Dose–response curves for three Ewing’s sarcoma cell lines
(MSS-ES-1, SK-ES-1 and TC-71) and two control cell lines with low SLFN11
expression (HCC-56 and SK-HEP-1). Grey vertical bars, standard deviation of

the mean growth inhibition (n 5 2). c, SLFN11 expression across 4,103 primary
tumours. Box-and-whisker plots show the distribution of mRNA expression for
each subtype, ordered by the median SLFN11 expression level (line), the inter-
quartile range (box) and up to 1.53 the inter-quartile range (bars). Sample
numbers (n) are indicated in parentheses.

RESEARCH LETTER

6 0 6 | N A T U R E | V O L 4 8 3 | 2 9 M A R C H 2 0 1 2

Macmillan Publishers Limited. All rights reserved©2012



36 / 38

Example - Predicting Drug Response
mechanistic biomarker for enhanced MEK inhibitor sensitivity in
this setting.

We also looked for markers predictive of response to several con-
ventional chemotherapeutic agents (Supplementary Fig. 7 and Sup-
plementary Table 6) and identified SLFN11 expression as the top
correlate of sensitivity to irinotecan (Fig. 4a), a camptothecin analogue
that inhibits the topoisomerase I (TOP1) enzyme. SLFN11 expression

also emerged as the top predictor of topotecan sensitivity (another
TOP1 inhibitor; Supplementary Figs 8 and 14). Overall, 12 of 16
lineages showed significant SLFN11 associations for topotecan or
irinotecan sensitivity (Pearson’s r $ 0.2, Supplementary Fig. 14b).
This finding was independently validated using data from the NCI-60
collection (Supplementary Fig. 15). SLFN11 knockdown did not affect
steady-state growth sensitivity profiles (Supplementary Fig. 14d–f).
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Figure 3 | AHR expression may denote a tumour dependency targeted by
MEK inhibitors in NRAS-mutant cell lines. a, Predictive features for PD-
0325901 sensitivity (using the ‘varying baseline’ activity area) in validated
NRAS-mutant cell lines. b, Growth inhibition curves for NRAS-mutant cell lines
expressing high (red) or low (blue) levels of AHR mRNA in the presence of the
MEK inhibitor PD-0325901. c, Relative AHR mRNA expression across a panel
of NRAS-mutant cell lines (arrows indicate cell lines where AHR dependency
was analysed). d–h, Proliferation of NRAS-mutant cell lines displaying high (d–
f) and low (g, h) AHR mRNA expression, after introduction of shRNAs against

AHR (red lines) or luciferase (blue lines). i, Left: proliferation of IPC-298 cells
(high AHR) after introduction of additional shRNAs against AHR (shAHR_1
and shAHR_4; green and purple lines, respectively) or luciferase (control shLuc;
blue line). Right: corresponding immunoblot analysis of AHR protein.
j, Equivalent studies as in i using SK-MEL-2 cells (high AHR). k, Endogenous
CYP1A1 mRNA expression in the neuroblastoma line CHP-212 or the
melanoma lines IPC-298 and SK-MEL-2 after exposure to vehicle (blue) or
MEK inhibitors (PD-0325901, green or PD-98059, purple). Error bars indicate
standard deviation between replicates, with n 5 12 (b), n 5 3 (c), n 5 6 (d–k).
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Figure 4 | Predicting sensitivity to topoisomerase I inhibitors. a, Elastic net
regression analysis of genomic correlates of irinotecan sensitivity is shown for
250 cell lines. b, Dose–response curves for three Ewing’s sarcoma cell lines
(MSS-ES-1, SK-ES-1 and TC-71) and two control cell lines with low SLFN11
expression (HCC-56 and SK-HEP-1). Grey vertical bars, standard deviation of

the mean growth inhibition (n 5 2). c, SLFN11 expression across 4,103 primary
tumours. Box-and-whisker plots show the distribution of mRNA expression for
each subtype, ordered by the median SLFN11 expression level (line), the inter-
quartile range (box) and up to 1.53 the inter-quartile range (bars). Sample
numbers (n) are indicated in parentheses.
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Implementation

I The notebook can be found on the course website.



38 / 38

Further Reading

I Computer Age Statistical Inference, Chapter 16
I sklearn: Generalized Linear Models
I Candès E. and Tao T. The Dantzig selector: statistical 

estimation when p is much larger than n.

https://web.stanford.edu/~hastie/CASI_files/PDF/casi.pdf
https://scikit-learn.org/stable/modules/linear_model.html
https://www.acm.caltech.edu/~emmanuel/papers/DantzigSelector.pdf
https://www.acm.caltech.edu/~emmanuel/papers/DantzigSelector.pdf

