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Week 2, Lecture 4 - Does my model work? 

Crossvalidation, bootstrap, and friends.

Aaron Meyer
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Outline

I Administrative Issues
I Model Evaluation

I Crossvalidation
I Bootstrap

I Example: Cancer survival gene signatures
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Cross-validation and the bootstrap

I In the section we discuss two resampling methods: 

cross-validation and the bootstrap.
I These methods refit a model with samples from the training set 

to obtain additional information about the fitted model.
I For example, they provide estimates of test-set prediction error, 

or the standard deviation and bias of our parameter estimates.
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Training error vs. test error

I Recall the distinction between the test error and the training 

error:
I The test error is the average error that results from using a 

statistical learning method to predict the response on a new 

observation, one that was not used in training the method.
I In contrast, the training error can be easily calculated by 

applying the statistical learning method to the observations 

used in its training.

I The training error rate often is quite different from the test 

error rate.
I The former can dramatically underestimate the latter.
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Training- vs. test-set performance
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More on prediction-error estimates

I Best solution: An infinitely large designated test set. Not 

feasible.
I Some methods make a mathematical adjustment to the 

training error rate to estimate the test error rate. These include 

the Cp statistic, AIC and BIC.
I Here we instead consider a class of methods that estimate the 

test error by holding out a subset of the training observations 

from the fitting process, and then applying the statistical 

learning method to those held out observations
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Validation-set approach

I Here we randomly divide the available set of samples into two 

parts: a training set and a validation or hold-out set.
I The model is fit on the training set, and the fitted model is 

used to predict the responses for the observations in the 

validation set.
I The resulting validation-set error provides an estimate of the 

test error. This is typically assessed using MSE in the case of a 

quantitative response and misclassification rate in the case of a 

qualitative (discrete) response.
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The validation process
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A random splitting into two halves: left part is training set, right 

part is validation set
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Example: automobile data

I Want to compare linear vs higher-order polynomial terms in a 

linear regression
I We randomly split the 392 observations into two sets, a 

training set containing 196 of the data points, and a validation 

set containing the remaining 196 observations.
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Drawbacks of validation set approach

I The validation estimate of the test error can be highly variable, 

depending on precisely which observations are included in each 

set.
I In the validation approach, only a subset of the observations — 

those that are included in the training set rather than in the 

validation set — are used to fit the model.
I This suggests that the validation set error may tend to 

overestimate the test error for the model fit on the entire data 

set.
I Why?
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K-fold cross-validation

I Widely used approach for estimating test error.
I Estimates can be used to select best model, and to give an idea 

of the test error of the final chosen model.
I Idea is to randomly divide the data into K equal-sized parts. 

We leave out part k, fit the model to the other K − 1 parts 

(combined), and then obtain predictions for the left-out kth 

part.
I This is done in turn for each part k = 1, 2, . . .K, and then the 

results are combined.
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K-fold cross-validation in detail

Table: Divide data into K roughly equal-sized parts (K = 5 here)

 1  2  3  4  5

 Validation  Train  Train  Train  Train
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The details

I Let the K parts be C1, C2, . . . CK , where Ck denotes the 

indices of the observations in part k. There are nk observations 

in part k: if N  is a multiple of K, then nk = n/K.
I Compute:

I

CV(K) =

K∑
k=1

nk

n
MSEk

I Where MSEk =
∑

i∈Ck
(yi − ŷi)

2/nk

I ŷi is the prediction for observation i when it was in the removed 

fold.

I Setting K = n yields leave-one out cross-validation (LOOCV).
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Auto data revisited

2 4 6 8 10

1
6

1
8

2
0

2
2

2
4

2
6

2
8

LOOCV

Degree of Polynomial

M
e

a
n

 S
q

u
a

re
d

 E
rr

o
r

2 4 6 8 10

1
6

1
8

2
0

2
2

2
4

2
6

2
8

10−fold CV

Degree of Polynomial
M

e
a

n
 S

q
u

a
re

d
 E

rr
o

r



15 / 42

True and estimated test MSE for the simulated data
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Other issues with cross-validation

I Since each training set is only (K − 1)/K as big as the original 

training set, the estimates of prediction error will typically be 

biased upward. Why?
I This bias is minimized when K = n(LOOCV ), but this estimate 

has high variance, as noted earlier.
I K = 5−−10 provides a good compromise.
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Cross-validation: right and wrong

I Consider a simple classifier applied to some two-class data:

1. Starting with 5000 predictors and 50 samples, find the 100 

predictors having the largest correlation with the class labels.

2. We then apply a classifier such as logistic regression, using only 

these 100 predictors.

I How do we estimate the test set performance of this classifier?
I Can we apply CV in Step 2, forgetting about Step 1?
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NO!

I This would ignore the fact that in Step 1, the procedure has 

already seen the labels of the training data, and made use of 

them. This is a form of training and must be included in the 

validation process.
I It is easy to simulate realistic data that is completely 

randomized, so that it is not possible to make any prediction, 

but the CV error estimate that ignores Step 1 is zero!
I This error is made in many biomedical studies.
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The wrong and right way

I Wrong: Apply cross-validation in step 2.
I Right: Apply cross-validation to steps 1 and 2.
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The wrong way
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The right way
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The bootstrap

I The bootstrap is a flexible and powerful statistical tool that 

can be used to quantify the uncertainty associated with a given 

estimator or statistical learning method.
I For example, it can provide an estimate of the standard error of 

a coefficient, or a confidence interval for that coefficient.
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Where does the name come from?

I The use of the term bootstrap derives from the phrase to pull 

oneself up by one’s bootstraps, widely thought to be based on 

one of the eighteenth century “The Surprising Adventures of 

Baron Munchausen” by Rudolph Erich Raspe:

The Baron had fallen to the bottom of a deep lake. Just when it 

looked like all was lost, he thought to pick himself up by his own 

bootstraps.

I It is not the same as the term “bootstrap” used in computer 

science meaning to “boot” a computer from a set of core 

instructions, though the derivation is similar.



24 / 42

Now back to the real world

I The procedure outlined above cannot be applied, because for 

real data we cannot generate new samples from the original 

population.
I However, the bootstrap approach allows us to use a computer 

to mimic the process of obtaining new data sets.
I Rather than repeatedly obtaining independent data sets from 

the population, we instead obtain distinct data sets by 

repeatedly sampling observations from the original data set 

with replacement.
I Each of these “bootstrap data sets” is created by sampling with 

replacement, and is the same size as our original dataset. As a 

result some observations may appear more than once in a given 

bootstrap data set and some not at all.
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Example with just 3 observations
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A graphical illustration of the bootstrap approach on a small sample 

containing n = 3 observations. Each bootstrap data set contains n
observations, sampled with replacement from the original data set. 

Each bootstrap data set is used to obtain an estimate of α.
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Example with just 3 observations

I Denoting the first bootstrap data set by Z∗1, we use Z∗1 to 

produce a new bootstrap estimate for α, which we call α̂∗1

I This procedure is repeated B times for some large value of B
(say 100 or 1000), in order to produce B different bootstrap 

data sets, Z∗1, Z∗2, . . . , Z∗B, and B corresponding α
estimates, α∗1, α∗2, . . . , α∗B.

I We estimate the standard error of these bootstrap estimates 

using the formula

SEB(α̂) =

√√√√ 1

B − 1

B∑
r=1

(
α̂∗r − ¯̂α∗r

)
.

I This serves as an estimate of the standard error of α̂ estimated 

from the original data set.
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A general picture for the bootstrap
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The bootstrap in general

I In more complex data situations, figuring out the appropriate 

way to generate bootstrap samples can require some thought.
I For example, if the data is a time series, we can’t simply 

sample the observations with replacement (why not?).
I We can instead create blocks of consecutive observations, and 

sample those with replacements. Then we paste together 

sampled blocks to obtain a bootstrap dataset.
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Other uses of the bootstrap

I Primarily used to obtain standard errors of an estimate.
I Also provides approximate confidence intervals for a population 

parameter.
I The above interval is called a Bootstrap Percentile confidence 

interval. It is the simplest method (among many approaches) 

for obtaining a confidence interval from the bootstrap.
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Can the bootstrap estimate prediction error?

I In cross-validation, each of the K validation folds is distinct 

from the other K − 1 folds used for training: there is no 

overlap. This is crucial for its success. Why?
I To estimate prediction error using the bootstrap, we could 

think about using each bootstrap dataset as our training 

sample, and the original sample as our validation sample.
I But each bootstrap sample has significant overlap with the 

original data. About two-thirds of the original data points 

appear in each bootstrap sample. Can you prove this?
I This will cause the bootstrap to seriously underestimate the 

true prediction error. Why?
I The other way around—with original sample = training sample, 

bootstrap dataset = validation sample—is worse!
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Removing the overlap

I Can partly fix this problem by only using predictions for those 

observations that did not (by chance) occur in the current 

bootstrap sample.
I But the method gets complicated, and in the end, 

cross-validation provides a simpler, more attractive approach 

for estimating prediction error.
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The bootstrap vs. permutation tests

I The bootstrap samples from the estimated population, and uses 

the results to estimate standard errors and confidence intervals.
I Permutation methods sample from an estimated null 

distribution for the data, and use this to estimate p-values and 

False Discovery Rates for hypothesis tests.
I The bootstrap can be used to test a null hypothesis in simple 

situations. For example, if θ = 0 is the null hypothesis, we 

check whether the confidence interval for θ contains zero.
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Example - gene expression signatures

Most Random Gene Expression Signatures Are
Significantly Associated with Breast Cancer Outcome
David Venet1, Jacques E. Dumont2, Vincent Detours2,3*

1 IRIDIA-CoDE, Université Libre de Bruxelles (U.L.B.), Brussels, Belgium, 2 IRIBHM, Université Libre de Bruxelles (U.L.B.), Campus Erasme, Brussels, Belgium, 3 WELBIO,

Université Libre de Bruxelles (U.L.B.), Campus Erasme, Brussels, Belgium

Abstract

Bridging the gap between animal or in vitro models and human disease is essential in medical research. Researchers often
suggest that a biological mechanism is relevant to human cancer from the statistical association of a gene expression marker (a
signature) of this mechanism, that was discovered in an experimental system, with disease outcome in humans. We examined
this argument for breast cancer. Surprisingly, we found that gene expression signatures—unrelated to cancer—of the effect of
postprandial laughter, of mice social defeat and of skin fibroblast localization were all significantly associated with breast
cancer outcome. We next compared 47 published breast cancer outcome signatures to signatures made of random genes.
Twenty-eight of them (60%) were not significantly better outcome predictors than random signatures of identical size and 11
(23%) were worst predictors than the median random signature. More than 90% of random signatures .100 genes were
significant outcome predictors. We next derived a metagene, called meta-PCNA, by selecting the 1% genes most positively
correlated with proliferation marker PCNA in a compendium of normal tissues expression. Adjusting breast cancer expression
data for meta-PCNA abrogated almost entirely the outcome association of published and random signatures. We also found
that, in the absence of adjustment, the hazard ratio of outcome association of a signature strongly correlated with meta-PCNA
(R2 = 0.9). This relation also applied to single-gene expression markers. Moreover, .50% of the breast cancer transcriptome
was correlated with meta-PCNA. A corollary was that purging cell cycle genes out of a signature failed to rule out the
confounding effect of proliferation. Hence, it is questionable to suggest that a mechanism is relevant to human breast cancer
from the finding that a gene expression marker for this mechanism predicts human breast cancer outcome, because most
markers do. The methods we present help to overcome this problem.

Citation: Venet D, Dumont JE, Detours V (2011) Most Random Gene Expression Signatures Are Significantly Associated with Breast Cancer Outcome. PLoS
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Example - gene expression signatures

Figure 1. Association of negative control signatures with overall survival. In plots A–C the NKI cohort was split into two groups using a
signature of post-prandial laughter (panel A), localization of skin fibroblasts (panel B), social defeat in mice (panel C). In panels A–C, the fraction of
patients alive (overall survival, OS) is shown as a function of time for both groups. Hazard ratios (HR) between groups and their associated p-values
are given in bottom-left corners. Panel D depicts p-values for association with outcome for all MSigDB c2 signatures and random signatures of
identical size as MSigDB c2 signatures.
doi:10.1371/journal.pcbi.1002240.g001
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Example - gene expression signatures

Figure 2. Most published signatures are not significantly better 
outcome predictors than random signatures of identical size. 
The x-axis denotes the p-value of association with overall survival. Red 
dots stand for published signatures, yellow shapes depict the 
distribution of p-values for 1000 random signatures of identical size, 
with the lower 5% quantiles shaded in green and the median shown as 
black line. Signatures are ordered by increasing sizes.
doi:10.1371/journal.pcbi.1002240.g002
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Example - gene expression signatures

Figure: Meta-PCNA adjustment decreases the prognostic abilities of 

published signatures. Hazard ratios for overall survival association of 48 

signatures in the original dataset (blue) and the meta-analysis (red).
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Example - gene expression signatures

Figure 4. Most prognostic transcriptional signals are correlated
with meta-PCNA. A) Each point denotes a signature. The x-axis
depicts the absolute value of the correlation of the first principal
component of the signatures with meta-PCNA, the y-axis depicts the
hazard ratio for outcome association. Details of the analysis for each
data point are available in the Supporting Information (Text S1). B)
Distribution of the correlations of individual genes with meta-PCNA, for
genes significantly associated with overall survival (red) and for all the
genes spotted on the microarrays (black).
doi:10.1371/journal.pcbi.1002240.g004
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Example - gene expression signatures

Figure 5. Purging cell cycle genes from a 
signature does not rule out proliferation 
signals. Distribution of the correlations with meta-
PCNA of genes in the Embryonic Stem Cell Module 
(blue, ref. [15]), of the correlations of the same 
module with its cell cycle genes removed (red) and 
of all of the genes spotted on the microarray (black). 
doi:10.1371/journal.pcbi.1002240.g005
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Implementation - Easiest

sklearn.model_selection.cross_val_score

I estimator: estimator object implementing ‘fit’
I X: array-like
I y: array-like, optional, default: None
I groups: array-like, with shape (n_samples,), optional
I scoring: string, callable or None, optional, default: None
I cv: int, cross-validation generator or an iterable, optional
I n_jobs: integer, optional
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Implementation - Iterators

I sklearn.model_selection.KFold(n_splits=3, 

shuffle=False, random_state=None)

I sklearn.model_selection.LeaveOneOut()

Both use loop for train_index, test_index in kf.split(X):.

get_n_splits provides number of iterations that will occur.
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Implementation - Bootstrap

for bootstrapi in range(num_bootstraps):

 X_index = range(X.shape[0])

 resamp = resample(X_index, random_state=9889)

 ycurr = y[resamp]

 Xcurr = X[resamp]

# ...
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Summary

I Randomization and hiding things are the key to success!
I Crossvalidation hides parts of the data at each step, to see how 

the model can predict it.
I Bootstrap generates “new” data by resampling, to get a 

distribution of models.

I With all model evaluation, think about what your model should 

be “learning”, and mess with that.
I Models that always work, or work unexpectedly well, should be 

suspicious.


