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Bayesian vs. frequentist approaches

Aaron Meyer
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Outline

I Administrative Issues
I Bayesian Statistics
I A Couple Examples

Based on slides from Joyce Ho.
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Frequentist versus Bayesian

Frequentist

I Data are a repeatable random sample (there is a frequency)
I Underlying parameters remain constant during repeatable 

process
I Parameters are fixed
I Prediction via the estimated parameter value

Bayesian

I Data are observed from the realized sample
I Parameters are unknown and described probabilistically 

(random variables)
I Data are fixed
I Prediction is expectation over unknown parameters
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Two views on how we interpret the world

Figure: https://xkcd.com/1132/
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Bayesian statistics derivation

Bayes’ theorem may be derived from the definition of conditional 

probability:

P (A | B) =
P (A ∩B)

P (B)
,  if P (B) 6= 0

P (B | A) =
P (B ∩A)

P (A)
,  if P (A) 6= 0

because

P (B ∩A) = P (A ∩B)

⇒ P (A ∩B) = P (A | B)P (B) = P (B | A)P (A)

⇒ P (A | B) =
P (B | A)P (A)

P (B)
, if P (B) 6= 0
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Classic example: Binomial experiment

I Given a sequence of coin tosses x1, x2, . . . , xM , we want to 

estimate the (unknown) probability of heads:

P (H) = θ

I The instances are independent and identically distributed 

samples
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Likelihood function

I How good is a particular parameter?
I Answer: Depends on how likely it is to generate the data

L(θ;D) = P (D | θ) =
∑
m

P (xm | θ)

I Example: Likelihood for the sequence: H, T, T, H, H

L(θ;D) = θ(1− θ)(1− θ)θθ = θ3(1− θ)2
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Likelihood Function
• How good is a particular parameter? 

Ans: Depends on how likely it is to generate the data 

• Example: Likelihood for the sequence H, T, T, H, H

L(✓;D) = P (D|✓) =
Y

m

P (xm|✓)

0 0.2 0.4 0.6 0.8 1 θ 

L(
θ 

:D
) L(✓;D) = ✓(1� ✓)(1� ✓)✓✓

= ✓3(1� ✓)2
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Maximum Likelihood Estimate (MLE)

I Choose parameters that maximize the likelihood function
I Commonly used estimator in statistics
I Intuitively appealing

I In the binomial experiment, MLE for probability of heads:

θ̂ =
NH

NH +NT
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Is MLE the only option?

I Suppose that after 10 observations, MLE estimates the 

probability of a heads is 0.7.
I Would you bet on heads for the next toss?
I How certain are you that the true parameter value is 0.7?
I Were there enough samples for you to be certain?
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Bayesian approach

I Formulate knowledge about situation probabilistically
I Define a model that expresses qualitative aspects of our 

knowledge (e.g., distributions, independence assumptions)
I Specify a prior probability distribution for unknown parameters 

that expresses our beliefs

I Compute the posterior probability distribution for the 

parameters, given observed data
I The posterior distribution can be used for:

I Reaching conclusions while accounting for uncertainty
I Make predictions that account for our uncertainty
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Posterior distribution

I The posterior distribution combines the prior distribution with 

the likelihood function using Bayes’ rule:

P (θ | D) =
P (θ)P (D | θ)

P (D)

I The denominator is just a normalizing constant so you can 

simplify:

Posterior ∝ Prior × Likelihood

I Predictions can be made by integrating over the posterior:

P (newdata | D) =

∫
θ
P (newdata | θ)P (θ | D)
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Revisiting the Binomial experiment

I Prior distribution: uniform for θ in [0, 1]
I Posterior distribution:

P (θ | x1, . . . , xM ) ∝ P (x1, . . . , xM | θ)× 1

I Example: 5 coin tosses with 4 heads, 1 tail
I MLE estimate:

P (θ) = 4
5 = 0.8

I Bayesian prediction:

P (xM+1 = H | D) =

∫
θP (θ | D) dθ = 5

7
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Bayesian inference and MLE

I The MLE and Bayesian prediction always differ in practice.
I However…

I If prior is well-behaved (i.e., does not assign 0 density to any 

“feasible” parameter value)
I Then both the MLE and Bayesian predictions converge to the 

same value as the training data becomes infinitely large
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Features of the Bayesian approach

I Probability is used to describe “physical” randomness and 

uncertainty regarding the true values of the parameters.
I The prior and posterior probabilities represent degrees of belief, 

before and after seeing the data, respectively.

I The model and prior are chosen based on the knowledge of the 

problem and not, in theory, by the amount of data collected or 

the question we are interested in answering.
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How to choose a prior

I Objective priors: Noninformative priors that attempt to capture 

ignorance.
I Subjective priors: Priors that capture our beliefs as completely 

as possible. They are subjective but not arbitrary.
I Hierarchical priors: Multiple levels of priors.
I Empirical priors: Learn some of the parameters of the prior 

from the data (“Empirical Bayes”)
I Robust, able to overcome limitations of mis-specification of prior
I Double counting of evidence / overfitting
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Conjugate prior

I If the posterior distribution are in the same family as prior 

probability distribution, the prior and posterior are called 

conjugate distributions
I All members of the exponential family of distributions have 

conjugate priors

Likeli-

hood

Conjugate 

prior 

distribution

Prior hyper-

parameter

Posterior 

hyperparameters

Bernoulli Beta α, β α+
∑

xi, β+n−
∑

xi
Multino-

mial

Dirichlet α α+
∑

xi

Poisson Gamma α, β α+
∑

xi, β + n
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Linear regression

Exactly what we did in lecture 2!

CS 584 [Spring 2016] - Ho

Linear Regression (Classic Approach)
y = w>x+ ✏, ✏ ⇠ N(0,�2)

P (yi|w, xi,�
2) = N(w>xi,�

2)

P (y|w,X,�2) =
Y

i

P (yi|w, xi,�
2)

maximize log likelihood

max ln(P (y|w, x,�2) = max
X

i

ln(N(yi|w, xi,�
2))

wMLE = argminw
1

2

X

i

(yi � x>
i w)

2

w = (X>X)�1X>y
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Bayesian linear regression

I Prior is placed on either the weight, w, or the variance, σ

I Conjugate prior for w is a normal distribution

P (w) ∼ N(µ0, S0)

P (w | y) ∼ N(µ, S)

S−1 = S−1
0 +

1

σ2
XTX

µ = S

(
S−1
0 µ0 +

1

σ2
XT y

)
I Mean is weighted average of OLS estimate and prior mean, 

where weights reflect relative strengths of prior and data 

information.



19 / 22

Computing the posterior distribution

Analytical integration Works when “conjugate” prior distributions 

can be used, which combine nicely with the 

likelihood—usually not the case.

Gaussian approximation Works well when there is sufficient data 

compared to model complexity—posterior distribution 

is close to Gaussian (Central Limit Theorem) and can 

be handled by finding its mode.

Markov chain Monte Carlo Simulate a Markov chain that 

eventually converges to the posterior 

distribution—currently the dominant approach.

Variational approximation Cleverer way to approximate the 

posterior and maybe faster than MCMC but not as 

general and exact.
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Limitations and criticisms of Bayesian methods

I It is hard to come up with a prior (subjective) and the 

assumptions may be wrong
I Closed world assumption: need to consider all possible 

hypotheses for the data before observing the data
I Computationally demanding (compared to frequentist 

approach)
I Use of approximations weakens coherence argument
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Example problem - HIV test

Facts:

I Rapid home tests will pick up an infection 97.7% of the time 

28 days after exposure (sensitivity).
I These same tests have a specificity of 95%.
I 0.34% of the US population is estimated to be infected.

Questions:

I A US resident receives a positive test. What is the chance they 

have HIV?
I How would this change if 5% of the population were infected?
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Further reading

I Bayesian Data Analysis
I Probabilistic Programming & Bayesian Methods for Hackers
I Software packages for Bayesian analysis:

I PyMC (python)
I emcee (python)
I Stan (C++, python, R)

https://www.stat.columbia.edu/~gelman/books/
https://camdavidsonpilon.github.io/Probabilistic-Programming-and-Bayesian-Methods-for-Hackers/
https://github.com/pymc-devs/pymc
https://github.com/dfm/emcee
https://github.com/stan-dev/stan

