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Clustering

» Unsupervised learning
» Requires data, but no labels
Detect patterns e.g. in

» Gene expression between patient samples
» Images
» Really any sets of measurements across samples
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Useful when don’t know what you're looking for
> But: can be gibberish



Clustering

» Basic idea: group together similar instances
» Example: 2D point patterns
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Clustering

> Basic idea: group together similar instances
» Example: 2D point patterns



What could “similar’ mean?

» One option: Euclidean distance

dist(x,y) = [lx — ||

» Clustering results are completely dependent on the measure of
similarity (or distance) between “points” to be clustered



What properties should a distance measure have?

» Symmetric
» D(A,B) =D(B,A)
» Otherwise we can say A looks like B but not vice-versa
» Positivity and self-similarity
> D(A,B) >0, and D(A,B)=0iff A=B
» Otherwise there will be objects that we can't tell apart
» Triangle inequality
> D(A,B)+ D(B,C) > D(A,C)
» Otherwise one can say “A is like B, B is like C, but A is not like
C atall”



Clustering algorithms

» Partition algorithms (flat)

» K-means

» Gaussian mixtures
» Heirarchical algorithms

» Bottom up -

agglomerative
» Top down - divisive
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K-means, an iterative clustering algorithm

» Initialize: Pick K random
points as cluster centers
» Alternate until no
assignments change:
1. Assign data points to
closest cluster center
2. Change the cluster
center to the average of
its assigned points




K-means, an iterative clustering algorithm

» Initialize: Pick K random
points as cluster centers
» Alternate until no
assignments change:
1. Assign data points to
closest cluster center
2. Change the cluster
center to the average of
its assigned points




K-means clustering: Example

» Pick K random points as cluster centers (means)
» Shown here for K=2




K-means clustering: Example

Iterative Step 1
Assign data points to closest cluster center




K-means clustering: Example

Iterative Step 2
Change the cluster center to the average of the assigned points
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K-means clustering: Example

Repeat until convergence




K-means clustering: Example
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K-means clustering: Example




Another Example
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Figure: Step 1



Another Example

0OBJ=4.47e+01
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Another Example
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Another Example

0OBJ=1.73e+01
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Another Example

0BJ=1.00e+01
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Another Example

0BJ=9.97e+00
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Another Example

0BJ=9.97e+00
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Properties of K-means algorithm

» Guaranteed to converge in a finite number of iterations
» Running time per iteration:
1. Assign data points to closest cluster center:
» O(KN) time
2. Change the cluster center to the average of its assigned points:
»> O(N) time



K-Means Convergence
Objective: min, minc Y5 1 3, cc, | — pil®

1. Fix u, optimize C"

mlnz Z ||z — MH = mlnz l|lz; — szH

i=1 xzeC;

2. Fix C, optimize yu:

mmz D Ml = pl®

i=1 zeC;

» Take partial derivative of u; and set to zero, we have

1
pi= o 2 ®
G 2

Kmeans takes an alternating optimization approach. Each step is
guaranteed to decrease the objective—thus guaranteed to converge.



Initialization

K mvanme Alamaridlhime e A lhAativiet: ~-



K-Means Getting Stuck

Local optima dependent on how the problem was specified:
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K-means not able to properly cluster




Changing the features (distance function) can help
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Agglomerative Clustering

» Agglomerative clustering:

» First merge very similar instances .
» Incrementally build larger clusters «® o
out of smaller clusters

> Algorithm: .

» Maintain a set of clusters o o

» Initially, each instance in its own .
cluster
» Repeat:
» Pick the two closest clusters
» Merge them into a new cluster
> Stop when there's only one
cluster left

» Produces not one clustering, but a fD\.
family of clusterings represented by
a dendrogram
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Agglomerative Clustering

How should we define “closest” for clusters with multiple elements?



Agglomerative Clustering

» How should we define “closest” for clusters with multiple
elements?
> Many options:
» Closest pair (single-link clustering)
» Farthest pair (complete-link clustering)
» Average of all pairs

» Different choices create different clustering behaviors



Agglomerative Clustering

» How should we define “closest” for clusters with multiple

elements?
> Many options:
» Closest pair (left)
> Farthest pair (right)
» Average of all pairs

» Different choices create different clustering behaviors
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Figure: Mouse tumor data from Hastie et al.




Agglomerative Clustering Questions

» Will agglomerative clustering converge?
» To a global optimum?
> Will it always find the true patterns in the data?
» Do people ever use it?
» How many clusters to pick?



Reconsidering “hard assignments’?

» Clusters may overlap
» Some clusters may be “wider” than others
» Distances can be deceiving!



Applications

» Clustering patients into groups based on molecular or
eitiological measurements

» Cells into groups based on molecular measurements

» Neuronal signals



Clustering Patients

ARTICLE

doi:10.1038/nature10983

The genomic and transcriptomic
architecture of 2,000 breast tumours
reveals novel subgroups

Christina Curtis"*#*, Sohrab P. Shah®**, Suet-Feung Chin"?*, Gulisa Turashvili***, Oscar M. Rueda'?, Mark J. Dunning?,
Doug Speed”*t, Andy G. Lynch"?, Shamith Samarajiwa"?, Yinyin Yuan"?, Stefan Grif"?, Gavin Ha®, Gholamreza Haffari’,

Ali Bashashati®, Roslin Russell?, Steven McKinney>*, METABRIC Group, Anita Langered®, Andrew Green’, Elena Provenzano®,
Gordon Wishart®, Sarah Pinder”, Peter Watson>*'°, Florian Markowetz"2, Leigh Murphy'?, lan Ellis’, Arnie Purushotham”!!,
Anne-Lise Borresen-Dale®'?, James D. Brenton>", Simon Tavaré"*>!4, Carlos Caldas">®!* & Samuel Aparicio®

The elucidation of breast cancer subgroups and their molecular drivers requires integrated views of the genome and
transcriptome from representative numbers of patients. We present an integrated analysis of copy number and gene
expression in a discovery and validation set of 997 and 995 primary breast tumours, respectively, with long-term clinical
follow-up. Inherited variants (copy number variants and single nucleotide polymorphisms) and acquired somatic copy
number aberrations (CNAs) were associated with expression in ~40% of genes, with the landscape dominated by cis-
and trans-acting CNAs. By delineating expression outlier genes driven in cis by CNAs, we identified putative cancer
genes, including deletions in PPP2R2A, MTAP and MAP2K4. Unsupervised analysis of paired DNA-RNA profiles revealed
novel subgroups with distinct clinical outcomes, which reproduced in the validation cohort These include a high-risk,
oestrogen-receptor-positive 11q13/14 cis-acting and a devoid of CNAs.
Trans-acting aberration hotspots were found to modulate subgroup-: speclflc gene networks, including a TCR
deleti diated adaptive i in the ‘CNA-devoid’ subgroup and a basal-specific chromosome 5
deletion-associated mitotic network. Our results provide a novel molecular stratification of the breast cancer
population, derived from the impact of somatic CNAs on the transcriptome.




Clustering Patients

Discovery set
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Figure 5 | The integrative subgroups have distinct clinical outcomes.

a, Kaplan-Meier plot of disease-specific survival (truncated at 15 years) for the
integrative subgroups in the discovery cohort. For each cluster, the number of
samples at risk is indicated as well as the total number of deaths (in
parentheses).



Clustering molecular signals

OPEN @ ACCESS Freely available online PLOS compurtationa BioLocy

MCAM: Multiple Clustering Analysis Methodology for
Deriving Hypotheses and Insights from High-Throughput
Proteomic Datasets

Kristen M. Naegle"z, Roy E. Welsch?, Michael B. Yaffe'>*, Forest M. White'?, Douglas A. Lauffenburger'*

1 Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America, 2Koch Institute for Integrative
Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America, 3 Sloan School of Management, Massachusetts Institute of
Technology, Cambridge, Massachusetts, United States of America, 4 Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United
States of America

Abstract

Advances in proteomic technologies continue to substantially accelerate capability for generating experimental data on
protein levels, states, and activities in biological samples. For example, studies on receptor tyrosine kinase signaling
networks can now capture the phosphorylation state of hundreds to thousands of proteins across multiple conditions.
However, little is known about the function of many of these protein modifications, or the enzymes responsible for
modifying them. To address this challenge, we have developed an approach that enhances the power of clustering
techniques to infer functional and regulatory meaning of protein states in cell signaling networks. We have created a new
computational framework for applying clustering to biological data in order to overcome the typical dependence on
specific a priori assumptions and expert knowledge concerning the technical aspects of clustering. Multiple clustering
analysis methodology (MCAM’) employs an array of diverse data transformations, distance metrics, set sizes, and clustering
algorithms, in a combinatorial fashion, to create a suite of clustering sets. These sets are then evaluated based on their
ability to produce biological insights through statistical enrichment of metadata relating to knowledge concerning protein
functions, kinase substrates, and sequence motifs. We applied MCAM to a set of dynamic phosphorylation measurements of
the ERRB network to explore the relationships between algorithmic parameters and the biological meaning that could be
inferred and report on interesting biological predictions. Further, we applied MCAM to multiple phosphoproteomic datasets
for the ERBB network, which allowed us to compare independent and incomplete overlapping measurements of
phosphorylation sites in the network. We report specific and global differences of the ERBB network stimulated with
different ligands and with changes in HER2 expression. Overall, we offer MCAM as a broadly-applicable approach for analysis
of proteomic data which may help increase the current understanding of molecular networks in a variety of biological
problems.



Clustering molecular signals
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Figure 1. Multiple Clustering Analysis Method. A) MCAM begins with clustering a biological dataset through the combinatorial application of a
set of clustering parameters, followed by biological enrichment testing in various categories of information. Following this, the enrichment is used to
prune those parameters that contribute little biological |nformat|on B) The depiction of an MCA, which contains M sets, with each set having some
Biological enrichment is corrected for multiple hypothesis
testing by using the False Discovery Rate procedure across a set and within a category of biological information. Mutual Information can be used to
compare the resulting clustering solution between any two sets.
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Clustering molecular signals
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Figure 3. Comparison of par s and metrics. B) Hierarchical clustering of pairwise mutual

information between every set in the MCA. Self-MI is highest along the diagonal. Highlighted groups
indicate dendrogram cutoffs for which the full group is composed of the denoted parameter. The
labels log10/pow denote normMax_log10, log10 and the pow transformations, pareto/zscore contain
zscore and pareto transformations. The topmost zscore/pareto group contains one outlier (out of the
group of 41) created using the transform pow.

doi:10.1371/journal.pcbi.1002119.g003



Clustering molecular signals
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Figure 4. Biological inference based on robust clustering results. A) The group of phosphopeptides that participate at least 50% of the time
in a cluster with enrichment for GO Biological Process term “MAPKKK Cascade”, those proteins with the term are starred. This new group is enriched
for GO BP term “positive regulation of DNA replication”. B) These three phosphopeptides always appear when GO Cellular Compartment term
“lamellipodium” is enriched, CTTN and PXN are the proteins annotated as being localized in lamellipodium. This new group is enriched for two

sequence motifs as well.
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Review

REVIEW

COMPUTATIONAL BIOLOGY

Avoiding common pitfalls when clustering
biological data

Tom Ronan, Zhijie Qi, Kristen M. Naegle*

Clustering is an t vised learning , which groups data points based on similarity, and is
used to reveal the underlying structure of data. This computational approach is essential to

ing and vi izing the plex data that are acquired in high-throughput multidimensional
biological experiments. Clustering enables researchers to make biological |nferences for further
experiments. Although a powerful technique, inappropriate ication can lead bi hers
to waste resources and time in experimental follow-up. We review common pltfalls identified froi
the published molecular biology literature and present methods to avoid them. Commonly encountered
pitfalls relate to the high-di i I nature of biols | data from high-throughput experiments, the
failure to consider more than one clustering method for a given problem, and the difficulty in determining
whether clustering has produced meaningful results. We present concrete examples of problems and
solutions (clustering results) in the form of toy problems and real biological data for these issues. We also
dlscuss ensemble clustering as an easy-to-implement method that enables !he exploration of multiple

i and imp! r of clustering solutions. I of

clustering pitfalls will help researchers avoid overinterpreting or misinterpreting the results and missing
valuable insights when clustering biological data.

Introduction Differentiating between a meaningful and a random clustering result can

Technological advances in recent decades have resulted in the ability to  be accomplished by applying cluster validation methods, determining
measure large numbers of molecules, typically across a smaller number of  statistical and biological significance, accounting for noise, and evaluating
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Fig. 1. Determining the dimensionality of a clustering problem. (A and B) Representation of the mRNA
clustering problem consisting of >14,000 mMRNAs measured across 89 cell lines. Data are from Lu et al. (6).
When the mRNAs are clustered, the mRNAs are the objects and each cell line represents a feature,
resulting in an 89-dimensional problem (A). When attempting to classify normal and tumor cell lines using
gene expression, the cells lines are the objects and each mRNA is a feature, resulting in a clustering
problem with thousands of dimensions (B). (C) Effect of dimensionality on sparsity. (D) Effect of dimension-
ality on coverage of the data based on SD from the mean.
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Fig. 2. Dimensionality reduction methods and effects. Comparison of PCA and subspace clustering. (A)
Three clusters are plotted in two dimensions. The dashed red line indicates the one-dimensional ine upon
which the original two-dimensional data is projected as determined by PCA. (B) The clusters are plotted in
the new single dimension after reducing the dimensionality from two to one. (C) Three alternate one-dimensional
projections (dashed red lines) onto which the data can be projected, each demonstrating better separabilty
for some clusters than the projection identiied using PCA. (D to F) Comparison of the original clustering
results of 89 cell lines in ~14,000-dimensional MRNA data (D) to clustering results after PCA (E) and after
subspace clustering (F). Blue bars, gastrointestinal cell lines; yellow bars, nongastrointestinal cell ines.
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Fig. 3. Effect of transformations and distance metric on clustering results. (A) Demonstration of how trans-
formations affect the relationship of data points in space. A toy data set (reference set, https://github.
comjknaegle/clusteringReview) was clustered into four clusters with agglomerative clustering, average
linkage, and Euclidean distance. The four reference clusters without transformation (upper panel) and after
log, transformation (lower panel). (B) Transformations and distance metrics change clustering results when
compared 1o the reference clustering result. With no transformation (upper panels), Euclidean and cosine
distance do not change cluster identity, but with Manhattan distance, a new cluster A"is added, and cluster
Cis merged into cluster B. With the log, transformation (lower panels), the Euclidean and Manhattan metrics
caused cluster C' to emerge and cluster D to be lost. (C) Dendrogram from the microRNA (miRNA)
clustering experiment result from 89 cell lines and 217 microRNAs (6). Gastrointestinal-derived cell lines
(blue bars) predominantly cluster together in the full-dimensional space. Note: The data were logy-
transformed as part of the preclustering analysis. (D) Same microRNA data as in (C) but without log,
transformation.
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Fig. 4. The effect of algorithm on clustering results. Four toy data sets (https://github.com/knaegle/
clusteringReview) demonstrate the effects of different types of clustering algorithms on various known
structures in two-dimensional data.
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Fig. 5. Ensemble clustering overview. Finishing techniques were applied to random toy data (see file S1
for analysis details). (A) Set of clustering results obtained using the k-means algorithm with various values
of k (a k-sweep). (B) Hierarchically clustered (Ward linkage) co-occurrence matrix for the ensemble of
results in (A). The heatmap represents the percentage of times any pair of data points coclusters across
the ensemble. (C) A majority vote analysis was applied (left panel) using a threshold of 50% on the co-
occurrence matrix in (B). Six clusters (see dendrogram color groupings) result from the majority vote
(right panel). (D) Application of fuzzy clustering to the ensemble. The left panel shows the details of the
co-occurrence matrix for the blue, gray, and orange clusters, and the right shows the clustering assign-
ments. The gray cluster provides an example of partially fuzzy clustering because it shares membership
with the orange and dark blue clusters.
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Fig. 6. clustering on ic data. (A) Single clustering solution showing known
interactors with EGFR (orange bars) and PDLIM1 (blue bar) coclustering in the phosphoproteomic data
(blue heatmap). (B) Co-occurrence matrix heatmap demonstrating clustering of interactors with EGFR
The known interactors with EGFR (orange bars) and PDLIM1 (blue bar) are found in a single cluster
(upper left). (C) Subset of clustering results across multiple distance metrics and clustering algorithms.
Under the dendrogram, known interactors with EGFR are marked with orange bars and PDLIM1 is
marked with a blue bar.
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Implementation

K-means
sklearn.cluster.KMeans
» n_clusters: Number of clusters to form
» init: Initialization method
» n_init: Number of initializations
» max_iter: Maximum steps algorithm can take

Agglomerative

sklearn.cluster.AgglomerativeClustering



Implementation - K-means

import numpy as np
from matplotlib.pyplot import figure
from mpl_toolkits.mplot3d import Axes3D

from sklearn.cluster import KMeans
from sklearn import datasets

datasets.load_iris()
iris.data, iris.target

iris
X, vy

est = KMeans(n_clusters=3)

ax = Axes3D(figure(), rect=[0, 0, .95, 1], elev=48, azim=134)
est.fit(X)
labels = est.labels_

ax.scatter(X[:, 31, X[:, 01, X[:, 21,
c=labels.astype(np.float), edgecolor='k')



Implementation - K-means

3 clusters

Petal length



Implementation - K-means

Ground Truth

Virginica
o _

Petal length



Further Reading

» sklearn: Clustering
> Avoiding common pitfalls when clustering biological data


https://scikit-learn.org/stable/modules/clustering.html
https://stke.sciencemag.org/content/9/432/re6

