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Aaron Meyer



2 / 56

Outline

I Administrative Issues
I Clustering

I K-Means
I Agglomerative

I Clustering examples
I Implementation

Slides adapted from David Sontag.
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Clustering

I Unsupervised learning
I Requires data, but no labels
I Detect patterns e.g. in

I Gene expression between patient samples
I Images
I Really any sets of measurements across samples

I Useful when don’t know what you’re looking for
I But: can be gibberish
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Clustering

I Basic idea: group together similar instances
I Example: 2D point patterns
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What could “similar” mean?

I One option: Euclidean distance

dist(x, y) = ‖x − y‖

I Clustering results are completely dependent on the measure of 

similarity (or distance) between “points” to be clustered
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What properties should a distance measure have?

I Symmetric
I D(A,B) = D(B,A)
I Otherwise we can say A looks like B but not vice-versa

I Positivity and self-similarity
I D(A,B) > 0, and D(A,B) = 0 iff A = B
I Otherwise there will be objects that we can’t tell apart

I Triangle inequality
I D(A,B) +D(B,C) ≥ D(A,C)
I Otherwise one can say “A is like B, B is like C, but A is not like 

C at all”
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Clustering algorithms

I Partition algorithms (flat)
I K-means
I Gaussian mixtures

I Heirarchical algorithms
I Bottom up - 

agglomerative
I Top down - divisive



10 / 56

K-means, an iterative clustering algorithm

I Initialize: Pick K random 

points as cluster centers
I Alternate until no 

assignments change:

1. Assign data points to 

closest cluster center

2. Change the cluster 

center to the average of 

its assigned points
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K-means clustering: Example

I Pick K random points as cluster centers (means)
I Shown here for K=2
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K-means clustering: Example

Iterative Step 1

Assign data points to closest cluster center
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K-means clustering: Example

Iterative Step 2

Change the cluster center to the average of the assigned points
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K-means clustering: Example

Repeat until convergence
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K-means clustering: Example
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K-means clustering: Example
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Another Example
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Figure: Step 1
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Another Example
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Figure: Step 2
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Another Example
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Figure: Step 3
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Another Example
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Figure: Step 4
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Another Example
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Figure: Step 7
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Properties of K-means algorithm

I Guaranteed to converge in a finite number of iterations
I Running time per iteration:

1. Assign data points to closest cluster center:
I O(KN) time

2. Change the cluster center to the average of its assigned points:
I O(N) time
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K-Means Convergence
Objective: minµ minC

∑k
i=1

∑
x∈Ci

‖x− µi‖2

1. Fix µ, optimize C:

min
C

k∑
i=1

∑
x∈Ci

‖x− µi‖2 = min
C

n∑
i

‖xi − µxi‖
2

2. Fix C, optimize µ:

min
µ

k∑
i=1

∑
x∈Ci

‖x− µi‖2

I Take partial derivative of µi and set to zero, we have

µi =
1

‖Ci‖
∑
x∈Ci

x

Kmeans takes an alternating optimization approach. Each step is 

guaranteed to decrease the objective—thus guaranteed to converge.
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Initialization

K-means algorithm is a heuristic:

I Requires initial means
I It does matter what you 

pick!
I What can go wrong?
I Various schemes for 

preventing this kind of 

thing: variance-based split 

/ merge, initialization 

heuristics
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K-Means Getting Stuck

Local optima dependent on how the problem was specified:
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K-means not able to properly cluster
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Changing the features (distance function) can help
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Agglomerative Clustering

I Agglomerative clustering:
I First merge very similar instances
I Incrementally build larger clusters 

out of smaller clusters

I Algorithm:
I Maintain a set of clusters
I Initially, each instance in its own 

cluster
I Repeat:

I Pick the two closest clusters
I Merge them into a new cluster
I Stop when there’s only one 

cluster left

I Produces not one clustering, but a 

family of clusterings represented by 

a dendrogram
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Agglomerative Clustering

How should we define “closest” for clusters with multiple elements?
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Agglomerative Clustering

I How should we define “closest” for clusters with multiple 

elements?
I Many options:

I Closest pair (single-link clustering)
I Farthest pair (complete-link clustering)
I Average of all pairs

I Different choices create different clustering behaviors
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Agglomerative Clustering

I How should we define “closest” for clusters with multiple 

elements?
I Many options:

I Closest pair (left)
I Farthest pair (right)
I Average of all pairs

I Different choices create different clustering behaviors
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Clustering Behavior

Figure: Mouse tumor data from Hastie et al.
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Agglomerative Clustering Questions

I Will agglomerative clustering converge?
I To a global optimum?

I Will it always find the true patterns in the data?
I Do people ever use it?
I How many clusters to pick?
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Reconsidering “hard assignments”?

I Clusters may overlap
I Some clusters may be “wider” than others
I Distances can be deceiving!
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Applications

I Clustering patients into groups based on molecular or 

eitiological measurements
I Cells into groups based on molecular measurements
I Neuronal signals
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Clustering Patients

ARTICLE
doi:10.1038/nature10983

The genomic and transcriptomic
architecture of 2,000 breast tumours
reveals novel subgroups
Christina Curtis1,2{*, Sohrab P. Shah3,4*, Suet-Feung Chin1,2*, Gulisa Turashvili3,4*, Oscar M. Rueda1,2, Mark J. Dunning2,
Doug Speed2,5{, Andy G. Lynch1,2, Shamith Samarajiwa1,2, Yinyin Yuan1,2, Stefan Gräf1,2, Gavin Ha3, Gholamreza Haffari3,
Ali Bashashati3, Roslin Russell2, Steven McKinney3,4, METABRIC Group{, Anita Langerød6, Andrew Green7, Elena Provenzano8,
Gordon Wishart8, Sarah Pinder9, Peter Watson3,4,10, Florian Markowetz1,2, Leigh Murphy10, Ian Ellis7, Arnie Purushotham9,11,
Anne-Lise Børresen-Dale6,12, James D. Brenton2,13, Simon Tavaré1,2,5,14, Carlos Caldas1,2,8,13 & Samuel Aparicio3,4

The elucidation of breast cancer subgroups and their molecular drivers requires integrated views of the genome and
transcriptome from representative numbers of patients. We present an integrated analysis of copy number and gene
expression in a discovery and validation set of 997 and 995 primary breast tumours, respectively, with long-term clinical
follow-up. Inherited variants (copy number variants and single nucleotide polymorphisms) and acquired somatic copy
number aberrations (CNAs) were associated with expression in 40% of genes, with the landscape dominated by cis-
and trans-acting CNAs. By delineating expression outlier genes driven in cis by CNAs, we identified putative cancer
genes, including deletions in PPP2R2A, MTAP and MAP2K4. Unsupervised analysis of paired DNA–RNA profiles revealed
novel subgroups with distinct clinical outcomes, which reproduced in the validation cohort. These include a high-risk,
oestrogen-receptor-positive 11q13/14 cis-acting subgroup and a favourable prognosis subgroup devoid of CNAs.
Trans-acting aberration hotspots were found to modulate subgroup-specific gene networks, including a TCR
deletion-mediated adaptive immune response in the ‘CNA-devoid’ subgroup and a basal-specific chromosome 5
deletion-associated mitotic network. Our results provide a novel molecular stratification of the breast cancer
population, derived from the impact of somatic CNAs on the transcriptome.
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Discovery set 

Figure 5  | The integrative subgroups have distinct clinical outcomes.
a, Kaplan–Meier plot of disease-specific survival (truncated at 15 years) for the 
integrative subgroups in the discovery cohort. For each cluster, the number of 
samples at risk is indicated as well as the total number of deaths (in 
parentheses).
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Clustering molecular signals

MCAM: Multiple Clustering Analysis Methodology for
Deriving Hypotheses and Insights from High-Throughput
Proteomic Datasets
Kristen M. Naegle1,2, Roy E. Welsch3, Michael B. Yaffe1,2,4, Forest M. White1,2, Douglas A. Lauffenburger1*

1 Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America, 2 Koch Institute for Integrative

Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America, 3 Sloan School of Management, Massachusetts Institute of

Technology, Cambridge, Massachusetts, United States of America, 4 Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United

States of America

Abstract

Advances in proteomic technologies continue to substantially accelerate capability for generating experimental data on
protein levels, states, and activities in biological samples. For example, studies on receptor tyrosine kinase signaling
networks can now capture the phosphorylation state of hundreds to thousands of proteins across multiple conditions.
However, little is known about the function of many of these protein modifications, or the enzymes responsible for
modifying them. To address this challenge, we have developed an approach that enhances the power of clustering
techniques to infer functional and regulatory meaning of protein states in cell signaling networks. We have created a new
computational framework for applying clustering to biological data in order to overcome the typical dependence on
specific a priori assumptions and expert knowledge concerning the technical aspects of clustering. Multiple clustering
analysis methodology (‘MCAM’) employs an array of diverse data transformations, distance metrics, set sizes, and clustering
algorithms, in a combinatorial fashion, to create a suite of clustering sets. These sets are then evaluated based on their
ability to produce biological insights through statistical enrichment of metadata relating to knowledge concerning protein
functions, kinase substrates, and sequence motifs. We applied MCAM to a set of dynamic phosphorylation measurements of
the ERRB network to explore the relationships between algorithmic parameters and the biological meaning that could be
inferred and report on interesting biological predictions. Further, we applied MCAM to multiple phosphoproteomic datasets
for the ERBB network, which allowed us to compare independent and incomplete overlapping measurements of
phosphorylation sites in the network. We report specific and global differences of the ERBB network stimulated with
different ligands and with changes in HER2 expression. Overall, we offer MCAM as a broadly-applicable approach for analysis
of proteomic data which may help increase the current understanding of molecular networks in a variety of biological
problems.
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Figure 1. Multiple Clustering Analysis Method. A) MCAM begins with clustering a biological dataset through the combinatorial application of a
set of clustering parameters, followed by biological enrichment testing in various categories of information. Following this, the enrichment is used to
prune those parameters that contribute little biological information. B) The depiction of an MCA, which contains M sets, with each set having some
number of k clusters and produced by a particular combination of clustering parameters. Biological enrichment is corrected for multiple hypothesis
testing by using the False Discovery Rate procedure across a set and within a category of biological information. Mutual Information can be used to
compare the resulting clustering solution between any two sets.
doi:10.1371/journal.pcbi.1002119.g001
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Clustering molecular signals

Figure 3. Comparison of parameters and metrics. B) Hierarchical clustering of pairwise mutual 
information between every set in the MCA. Self-MI is highest along the diagonal. Highlighted groups 
indicate dendrogram cutoffs for which the full group is composed of the denoted parameter. The 
labels log10/pow denote normMax_log10, log10 and the pow transformations, pareto/zscore contain 
zscore and pareto transformations. The topmost zscore/pareto group contains one outlier (out of the 
group of 41) created using the transform pow.
doi:10.1371/journal.pcbi.1002119.g003
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Figure 4. Biological inference based on robust clustering results. A) The group of phosphopeptides that participate at least 50% of the time 
in a cluster with enrichment for GO Biological Process term ‘‘MAPKKK Cascade’’, those proteins with the term are starred. This new group is enriched 
for GO BP term ‘‘positive regulation of DNA replication’’. B) These three phosphopeptides always appear when GO Cellular Compartment term 
‘‘lamellipodium’’ is enriched, CTTN and PXN are the proteins annotated as being localized in lamellipodium. This new group is enriched for two
sequence motifs as well.
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C O M P U T A T I O N A L B I O L O G Y

Avoiding common pitfalls when clustering
biological data
Tom Ronan, Zhijie Qi, Kristen M. Naegle*

Clustering is an unsupervised learning method, which groups data points based on similarity, and is
used to reveal the underlying structure of data. This computational approach is essential to
understanding and visualizing the complex data that are acquired in high-throughput multidimensional
biological experiments. Clustering enables researchers to make biological inferences for further
experiments. Although a powerful technique, inappropriate application can lead biological researchers
to waste resources and time in experimental follow-up. We review common pitfalls identified from
the published molecular biology literature and present methods to avoid them. Commonly encountered
pitfalls relate to the high-dimensional nature of biological data from high-throughput experiments, the
failure to consider more than one clustering method for a given problem, and the difficulty in determining
whether clustering has produced meaningful results. We present concrete examples of problems and
solutions (clustering results) in the form of toy problems and real biological data for these issues. We also
discuss ensemble clustering as an easy-to-implement method that enables the exploration of multiple
clustering solutions and improves robustness of clustering solutions. Increased awareness of common
clustering pitfalls will help researchers avoid overinterpreting or misinterpreting the results and missing
valuable insights when clustering biological data.

Introduction

Technological advances in recent decades have resulted in the ability to
measure large numbers of molecules, typically across a smaller number of
conditions. Systems-level measurements are mined for meaningful re-
lationships between molecules and conditions. Clustering represents a
common technique for mining large data sets. Clustering is the unsupervised
partitioning of data into groups, such that items in each group are more
similar to each other than they are to items in another group. The purpose
of clustering analysis of biological data is to gain insight into the
underlying structure in the complex data—to find important patterns with-
in the data, to uncover relationships between molecules and conditions,
and to use these discoveries to generate hypotheses and decide on further
biological experimentation. The basics of clustering have been extensively
reviewed (1–3). Clustering has led to various discoveries, including
molecular subtypes of cancer (4–7), previously unknown protein inter-
actions (8), similar temporal modules in receptor tyrosine kinase cas-
cades (9), metabolic alterations in cancer (10), and protease substrate
specificity (11).

Although clustering is useful, it harbors potential pitfalls when applied
to biological data from high-throughput experiments. Many of these
pitfalls have been analyzed and addressed in publications in the fields of
computation, bioinformatics, and machine learning, yet the solutions to
these problems are not commonly implemented in biomedical literature.
The pitfalls encountered when clustering biological data derive primarily
from (i) the high-dimensional nature of biological data from high-
throughput experiments, (ii) the failure to consider the results from more
than one clustering method, and (iii) the difficulty in determining whether
clustering has produced meaningful results. Biological systems are complex,
so there are likely to be many relevant interactions between different aspects
of the system, as well as meaningless relationships due to random chance.

Differentiating between a meaningful and a random clustering result can
be accomplished by applying cluster validation methods, determining
statistical and biological significance, accounting for noise, and evaluating
multiple clustering solutions for each data set. The high-dimensional nature
of biological data means that the underlying structure is difficult to visualize,
that valid but conflicting clustering results may be found in different subsets
of the dimensions, and that some common clustering algorithms and
distance metrics fail in unexpected and hidden ways. To address these
issues, clustering parameters and methods that are compatible with high-
dimensional data must be chosen, the results must be validated and tested
for statistical significance, and multiple different clustering methods
should be applied as part of routine analysis. Our main goal is to dispel
the belief that there exists a one-size-fits-all perfect method for clustering
biological data.

Some solutions to address these pitfalls require awareness of the issue
and the use of appropriate methods, whereas other solutions require sub-
stantial computational skills and resources to implement successfully. How-
ever, one method—ensemble clustering (that is, clustering data many ways
while making some perturbation to the data or clustering parameters)—
solves multiple pitfalls and can be implemented without extensive pro-
gramming or computational resources. We mention the uses of ensemble
clustering, as appropriate, and provide an overviewof ensemble clustering
at the end.

The Effect of High Dimentionality on
Clustering Results

Systems-level measurements and high-throughput experiments are diverse
in size of the data sets, number of dimensions, and types of experimental
noise. Examples include measurements of the transcript abundance from
thousands of genes across several conditions (such as in multiple cell lines
or in response to drug treatments) (6, 12), measurements of changes in the
abundance of hundreds of peptides over time after a stimulation (13), or
measurements of changes in the abundance of hundreds of microRNAs

Department of Biomedical Engineering, Center for Biological Systems Engi-
neering, Washington University in St. Louis, St. Louis, MO 63130, USA.
*Corresponding author. Email: knaegle@wustl.edu
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A B

C

D

Fig. 1. Determining the dimensionality of a clustering problem. (A and B) Representation of the mRNA
clustering problem consisting of >14,000mRNAs measured across 89 cell lines. Data are from Lu et al. (6 ).
When the mRNAs are clustered, the mRNAs are the objects and each cell line represents a feature,
resulting in an 89-dimensional problem (A). When attempting to classify normal and tumor cell lines using
gene expression, the cells lines are the objects and each mRNA is a feature, resulting in a clustering
problem with thousands of dimensions (B). (C) Effect of dimensionality on sparsity. (D) Effect of dimension-
ality on coverage of the data based on SD from the mean.
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The clustering results from the original study
(clustering 89 cell lines using the mRNA
data, ~14,000 dimensions) (Fig. 2D) were
compared to the clustering results after using
PCA to reduce the dimensionality to the 10
most relevant features (Fig. 2E) and after
using subspace clustering to reduce the dimen-
sionality to the 10 most informative features
(Fig. 2F). As Lu et al. found, we do not
see significant grouping of cell lines of
gastrointestinal origin when we cluster
the data in the full feature space (Fig.
2D), or if we reduce dimensionality using
the first 10 principal components as
features fromPCA (Fig. 2E).However, a se-
lection of one 10-dimensional subspace
shows strong clustering for gastrointestinal
cell lines (Fig. 2F)—almost as strong as the
results that Lu and colleagues presented
for much lower-dimensional microRNA
data. This analysis suggests that, although
the reduced dimensions of principal com-
ponent space may have uncovered a struc-
ture that we do not understand, PCA was
not informative for grouping cells based
on their tissue of origin. However, there is
a subspace (a subset of features from the
original dimensions) for the mRNA data in
which we can successfully group cells by
their origins. This example illustrates how
irrelevant features in the high-dimensional
space masked the grouping of cells by ori-
gin, despite the data including expression
measurements of genes that reflect tissue
origin. The key was finding the right ap-
proach to cluster the data.

Effects of Clustering Parameters
on Clustering Results

In addition to issues related to the high
dimensionality of biological data, cluster-
ing parameters also affect the clustering
result. Given the same data, varying a sin-
gle parameter of clustering, such as the transformation, the distance metric,
or the algorithm, can drastically alter the clustering result. Unfortunately,
there is often no clear choice of best metric or best transformation to use
on a particular type of biological data. Each choice can mask or reveal a
different facet of the organization within the data. Therefore, in addition to
applying different methods of clustering and different approaches to ad-
dressing dimensionality, it is essential to consider results from multiple
parameters when evaluating clustering results for biological data.

Transformations and distance metrics
Data are often transformed as part of analysis and processing. For ex-
ample, transcriptional microarray data are commonly log2-transformed.
This transformation expands the information for genes with low expres-
sion variation across samples and simplifies the identification of genes
with differential expression. Similarly, in proteomic data sets, data may
be centered and scaled by autoscaling or Z-scoring (25) to make relative

comparisons between signals for which magnitude cannot be directly
compared. Although transformation can improve the ability to draw use-
ful biological insight (31, 32), transformation also generates a new data
set with altered relationships that may reveal or mask some underlying
biological relationships in the data (Fig. 3, A and B).

Although transformation of data is routine as a part of preclustering
analysis, because of the effects on density and distance in the data set,
any transformations done on the data at any point should be explicitly
considered as a clustering parameter during the clustering process. We
found that, compared with using different distance metrics or clustering
algorithms (32), transformations often had the greatest impact on a
clustering result (Fig. 3B). In other cases, transformation has little impact
on clustering results (Fig. 3, C and D).

The choice of a distance metric also greatly affects clustering results
because different distance metrics accentuate different relationships
within the data (Fig. 3B). Thus, to avoid missing information in the data,

A

B

C

D

E

F

Fig. 2. Dimensionality reduction methods and effects. Comparison of PCA and subspace clustering. (A)
Three clusters are plotted in two dimensions. The dashed red line indicates the one-dimensional line upon
which the original two-dimensional data is projected as determined by PCA. (B) The clusters are plotted in
the new single dimension after reducing the dimensionality from two to one. (C) Three alternate one-dimensional
projections (dashed red lines) onto which the data can be projected, each demonstrating better separability
for some clusters than the projection identified using PCA. (D to F) Comparison of the original clustering
results of 89 cell lines in ~14,000-dimensional mRNA data (D) to clustering results after PCA (E) and after
subspace clustering (F). Blue bars, gastrointestinal cell lines; yellow bars, nongastrointestinal cell lines.
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different distance metrics and transforma-
tions should be applied as a routine part
of clustering analysis.

Clustering algorithms
The choice of a clustering algorithm is
based on several factors: (i) the underlying
structure of the data, (ii) the dimensionality
of the data, (iii) the number of relevant
features for the biological questions being
asked, and (iv) the noise and variance in
the data. Each algorithm incorporates dif-
ferent assumptions about the data and can
reveal different relationships among the
data. (Fig. 4). The four primary classes of
clustering algorithms are hierarchical, cen-
troid, density, and statistical. The choice of
clustering algorithm depends on the pre-
dicted structure of the data, and each algo-
rithm class produces clusters with different
properties. Hierarchical clustering is useful
when data are expected to contain clusters
within clusters, or the observations are ex-
pected to have a nested relationship. The
Ward algorithm (Fig. 4, column 2) can pro-
duce different results depending on the
threshold for similarity, highlighting hier-
archical relationships. For example, at dif-
ferent thresholds, the green cluster (Fig. 4,
row 2, column 2, two lower groups) might
take on separate cluster identities, indicat-
ing that the group is composed of two sub-
groups. Centroid clustering, such as k-means
clustering, assigns membership in a cluster
based on the distance from multiple centers,
resulting in roughly spherical clusters even
when the underlying data are not spheri-
cally distributed. The k-means algorithm
depends heavily on the selection of the cor-
rect value for k and tends to find spherical
clusters (Fig. 4, column1). It performs poor-
ly on irregularly shaped data (Fig. 4, rows 3 to 5, column 1). Density-based
algorithms, such as DBSCAN (22), connect groups of densely con-
nected points with regions of lower density separating clusters. Because
it does not rely on a particular cluster shape, it can capture more complex
structures in low-dimensional data (Fig. 4, rows 3 to 5, column 3) and
does not tend to find clusters in uniform data (Fig. 4, row 1, column 3).
However, variations in density can cause it to find additional clusters not
found by other algorithms (Fig. 4, rows 2 and 3, column 3). Statistical
methods, such as self-organizing maps (33) and Gaussian mixture models
(Fig. 4, column 4), fit statistical distributions to data to identify multiple
groups of observations, each belonging to their respective distribution,
but have limited success on nonnormally distributed data (Fig. 4, rows
3 to 5).

Whereas the data in Fig. 4 are toy examples, real-world examples are
often high-dimensional and difficult to plot. Often, the underlying struc-
ture is not known for most biological data, and it is likely that a complex
biological data set will have multiple structures—nonspherical distributions,
widely varying density scales, and nested relationships—that will only be
revealed by applying multiple clustering algorithms.

Evaluating Clustering Results

How can you tell when the clustering result of biological data is meaning-
ful? Because of the complexity of biological systems, there are likely to be
many valid clustering results, each revealing some aspect of underlying
biological behavior. Unfortunately, there are likely to be many meaningless
relationships simply due to random chance because the data are complex.
Most clustering algorithms will find clusters, even if there is no true
underlying structure in the data (as exemplified by Fig. 4, top row). There-
fore, clusters must be evaluated for biological relevance, stability, and cluster
fitness. Understanding and accounting for noise and uncertainty in the
data should be also considered when determining whether a clustering result
is meaningful.

Cluster validation
Validation metrics are a measure of clustering fitness, assessing if the
result represents a well-defined structure within the data set, using con-
cepts such as cluster compactness, connectedness, or separation, or
combinations of these attributes. Much like distance metrics, each vali-
dation metric accentuates different aspects of the data to account for the
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Fig. 3. Effect of transformations and distance metric on clustering results. (A) Demonstration of how trans-
formations affect the relationship of data points in space. A toy data set (reference set, https://github.
com/knaegle/clusteringReview) was clustered into four clusters with agglomerative clustering, average
linkage, and Euclidean distance. The four reference clusters without transformation (upper panel) and after
log2 transformation (lower panel). (B) Transformations and distance metrics change clustering results when
compared to the reference clustering result. With no transformation (upper panels), Euclidean and cosine
distance do not change cluster identity, but with Manhattan distance, a new cluster A′ is added, and cluster
C is merged into cluster B. With the log2 transformation (lower panels), the Euclidean and Manhattan metrics
caused cluster C′ to emerge and cluster D to be lost. (C) Dendrogram from the microRNA (miRNA)
clustering experiment result from 89 cell lines and 217 microRNAs (6). Gastrointestinal-derived cell lines
(blue bars) predominantly cluster together in the full-dimensional space. Note: The data were log2-
transformed as part of the preclustering analysis. (D) Same microRNA data as in (C) but without log2
transformation.
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Fig. 4. The effect of algorithm on clustering results. Four toy data sets (https://github.com/knaegle/
clusteringReview) demonstrate the effects of different types of clustering algorithms on various known
structures in two-dimensional data.
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parameters—and then accounting for all of
the clustering results across the ensemble.
The goal of ensemble clustering is to im-
prove the quality and robustness of cluster-
ing results when compared to any single
clustering result.

Why do ensembles improve quality and
robustness? In short, it is because uncorre-
lated “noise” cancels across the clustering
results. In ensemble clustering, noise in the
clustering results occurs when there are
strong biases due to the selected algorithms
or because the data contains poorly clustering
points. Fortunately, if the errors in each clus-
tering result are not correlated, and the er-
rors pertain to only a subset of the data,
then the shared decisions made across the
ensemble will dominate, resulting in con-
vergence to the robust clustering result. A
combination of diverse clustering results
strengthens the underlying signal while fil-
tering out the individual noise from each
clustering result, enabling a more robust
determination of the data structure than that
acquired from a single clustering result ob-
tained through analysis of the data without
perturbation.

Ensemble generation, finishing,
and visualization
The process of performing ensemble clus-
tering involves selecting an appropriate per-
turbation (Table 3), collecting the clustering
results based on the perturbation, and then
either combining the individual clustering
results into a single clustering result or ex-
ploring the ensemble of clustering results for information about the
underlying structure of the data. To illustrate an ensemble of clustering solu-
tions, we used random toy data and created an ensemble of clustering results
using k-means clustering with an increasing number of clusters (k) (Fig. 5A).

There have been many techniques proposed to combine results of in-
dividual clustering results in the ensemble into one final clustering result.
We refer to these methods as finishing techniques. Most finishing tech-
niques use agreement across the ensemble to build a final clustering result.
One method is to calculate the co-occurrence (or consensus) matrix. A co-
occurrence matrix is anm ×mmatrix, where each entry, Ci,j, represents the
number of times object i clusters with object j across all of the clustering
results in the ensemble.

We clustered the co-occurrence matrix using hierarchical clustering
and Ward linkage and plotted the result as a heatmap (Fig. 5B). The clusters
are formed on the basis of creating maximal in-group co-occurrence fre-
quency and minimum co-occurrence with members outside the group.
This representation reveals a wealth of detail about the relationships be-
tween data points and highlights data points that cocluster robustly (that is,
frequently) with each other across the ensemble.

Others have used majority voting, also based on the ideas of robustness
(59, 60), as demonstrated in Fig. 5C. We subjected the co-occurrence
matrix above to majority voting (Fig. 5C, left) and then plotted the en-
semble majority-voting cluster assignments (Fig. 5C, right). Identifying
the most robust clustering result is useful for generating hypotheses for

further experimental testing because hypotheses can be ranked on the
basis of strength of the co-occurrence (90% of the time compared to
10% of the time).

Another finishing technique to identify robust portions of the ensemble
is to apply graph theory. For example, if we assumed that the co-occurrence
matrix represented edge weights (a numerical value indicating the
strength of connection) connecting the data points, we could traverse
these weights to find maximally connected subgraphs and provide a dif-
ferent representation of robust clusters (61). With this concept of graph the-
ory representations of ensemble clustering, we discovered that robustly
clustered dynamic tyrosine phosphorylation data uncovered molecular-
level interactions (8).

The finishing techniques mentioned above uniquely assign each obser-
vation to one cluster, thereby creating hard partitions within the data.
However, a benefit of ensemble clustering is the ability to identify the
probability of relationships (fuzzy partitioning), which can be applied
to the entire data (probability is calculated for membership of any ob-
servation to any cluster) or a mixture of hard partitioning and probability-
based assignment. An examination of the portion of the heatmap repre-
sentation of the co-occurrence matrix containing the blue, gray, and
orange clusters demonstrates fuzzy partitioning (Fig. 5D, left). The
heatmap indicates that the gray cluster members share partial member-
ship with the blue and orange clusters (Fig. 5D, right). Rather than
considering the gray cluster as distinct, one can consider it to have a
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Fig. 5. Ensemble clustering overview. Finishing techniques were applied to random toy data (see file S1
for analysis details). (A) Set of clustering results obtained using the k-means algorithm with various values
of k (a k-sweep). (B) Hierarchically clustered (Ward linkage) co-occurrence matrix for the ensemble of
results in (A). The heatmap represents the percentage of times any pair of data points coclusters across
the ensemble. (C) A majority vote analysis was applied (left panel) using a threshold of 50% on the co-
occurrence matrix in (B). Six clusters (see dendrogram color groupings) result from the majority vote
(right panel). (D) Application of fuzzy clustering to the ensemble. The left panel shows the details of the
co-occurrence matrix for the blue, gray, and orange clusters, and the right shows the clustering assign-
ments. The gray cluster provides an example of partially fuzzy clustering because it shares membership
with the orange and dark blue clusters.
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partial membership in either the orange
or blue clusters with a probability based
on the co-occurrence matrix value.

Ensembles for robust
clustering results
Ensemble clustering can reveal unexpected
results. When an algorithm with limited
capabilities is combined into an ensem-
ble, the clustering result of the ensemble
can have new capabilities. For example,
although a k-means algorithm can only
identify spherical clusters, when used as
part of an ensemble with majority voting,
the ensemble can identify half-moons and
spirals (59). This is possible because sig-
nals from relatively weak relationships
in each clustering result are combined to
improve the strength of the pairwise rela-
tionship between points in the ensemble
clustering results. Ensemble clustering can
assess the impact of perturbations to clus-
tering parameters on the clustering results,
revealingwhen transformations to the data
have a larger impact on the clustering re-
sult than when the algorithm or distance
metric does (32).

As an example of ensemble clustering,
we describe a subset of the results of an
ensemble approach that we used to clus-
ter the dynamics of tyrosine phospho-
rylation in the epidermal growth factor
receptor (EGFR) network measured by
Wolf-Yadlin and colleagues (13). From
this analysis, we identified previously un-
known protein interactions (8). We show
a subset of the full analysis to illustrate this
process (Fig. 6). PDLIM1, a protein not
previously reported as part of the EGFR
network, had similar phosphotyrosine
dynamicswithmanyother proteins known
to directly interact with phosphorylated
tyrosine residues of EGFR (Tyr1197 and Tyr1172) (Fig. 6A; blue bar,
PDLIM1; orange bars, EGFR interactors). To identify a more robust rep-
resentation of the clustering behavior of the system, we generated an
ensemble of clusters by varying distance metrics and clustering algo-
rithms. Across the ensemble, known interactions had a much higher ten-
dency to cluster together than with noninteractors. Avisualization of the
ensemble results—a co-occurrence matrix—places the interactors of
these EGFR phosphotyrosine sites in one of the clusters (Fig. 6B, upper
left and orange bars), along with the potential interactor PDLIM1 (blue
bar). On the basis of these results, we experimentally tested and validated
PDLIM1 as a protein that interacted with EGFR (8). It is important to
note that, in many of the ensemble clustering results, PDLIM1 did not
cluster with all known interactors of EGFR phosphorylated at Tyr1197

and Tyr1172. Rather, PDLIM1 tended to cluster with a subset of known
interactors. Furthermore, in many ensemble clustering results, the known
interactors of EGFRdid not all cluster together (Fig. 6C). This demonstrates
the value of ensemble clustering because analysis of a single clustering re-
sult might have missed this important relationship (8).

Conclusion

Clustering biological data involves a number of choices, many of which
are critical to obtaining meaningful results. Evaluation of a data set
should be performed to ensure that it has a sufficient number of obser-
vations (data points) and that the dimensionality of those observations
informs subsequent clustering choices. For each new data set, dimen-
sionality and any transformations applied should influence the choice
of appropriate distance metrics and algorithms for clustering. Data sets
of more than 10 dimensions often behave unexpectedly, and clustering
can produce meaningless results. Using only a single clustering result
from any data set can lead to wasted time and resources resulting from
erroneous hypothesis testing. The effect of permutations of clustering
parameters on the clustering results should be explored using validation
metrics and stability testing. When possible, noise and variance should
be accounted for in the clustering method directly rather than simply tak-
ing averages at each data point. Once clustering results are obtained, their
validity should be evaluated using the appropriate metrics. The statistical
significance of clustering results should also be evaluated, and multiple
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Fig. 6. Ensemble clustering on phosphoproteomic data. (A) Single clustering solution showing known
interactors with EGFR (orange bars) and PDLIM1 (blue bar) coclustering in the phosphoproteomic data
(blue heatmap). (B) Co-occurrence matrix heatmap demonstrating clustering of interactors with EGFR.
The known interactors with EGFR (orange bars) and PDLIM1 (blue bar) are found in a single cluster
(upper left). (C) Subset of clustering results across multiple distance metrics and clustering algorithms.
Under the dendrogram, known interactors with EGFR are marked with orange bars and PDLIM1 is
marked with a blue bar.
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Implementation

K-means
sklearn.cluster.KMeans

I n_clusters: Number of clusters to form
I init: Initialization method
I n_init: Number of initializations
I max_iter: Maximum steps algorithm can take

Agglomerative

sklearn.cluster.AgglomerativeClustering
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Implementation - K-means

import numpy as np

from matplotlib.pyplot import figure

from mpl_toolkits.mplot3d import Axes3D

from sklearn.cluster import KMeans

from sklearn import datasets

iris = datasets.load_iris()

X, y = iris.data, iris.target

est = KMeans(n_clusters=3)

ax = Axes3D(figure(), rect=[0, 0, .95, 1], elev=48, azim=134)

est.fit(X)

labels = est.labels_

ax.scatter(X[:, 3], X[:, 0], X[:, 2],

 c=labels.astype(np.float), edgecolor='k')

# ...
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Implementation - K-means
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Implementation - K-means
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Further Reading

I sklearn: Clustering
I Avoiding common pitfalls when clustering biological data

https://scikit-learn.org/stable/modules/clustering.html
https://stke.sciencemag.org/content/9/432/re6

