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Dealing with many variables

> So far we've largely concentrated on cases in which we have
relatively large numbers of measurements for a few variables
» This is frequently refered to as n > p
» Two other extremes are imporant

» Many observations and many variables
» Many variables but few observations (p > n)



Dealing with many variables

Usually when we're dealing with many variables, we don't
have a great understanding of how they relate to each other

» E.g. if gene X is high, we can’t be sure that will mean gene Y
will be too
> If we had these relationships, we could reduce the data

» E.g. if we had variables to tell us it's 3 pm in Los Angeles, we
don't need one to say it's daytime



Dimensionality Reduction

Generate a low-dimensional encoding of a high-dimensional
space
Purposes:

» Data compression / visualization

» Robustness to noise and uncertainty

» Potentially easier to interpret

Bonus: Many of the other methods from the class can be applied
after dimensionality reduction with little or no adjustment!



Matrix Factorization

Many (most?) dimensionality reduction methods involve matrix
factorization

Basic Idea: Find two (or more) matrices whose product best approxi-
mate the original matrix

Low rank approximation to original N x M matrix:

X ~ WH”

where Wis N x R, H is M x R, and R < N.



Matrix Factorization

samples

‘A/ “regressors”,

“activation coefficients”,
“expansion coefficients”

X

X

features

Data matrix “dictionary”, “patterns”,
“topics”, “basis”,
“explanatory variables”

Generalization of many methods (e.g., SVD, QR, CUR, Truncated
SVD, etc.)



Aside - What should R be?

X ~ WH?

where Wis M x R, H is M x R, and R < N.



Matrix Factorization
Matrix factorization is also compression

Figure: https://www.aaronschlegel.com/image-compression-principal-
component-analysis/



Factor Analysis
Matrix factorization is also compression

Figure: https://www.aaronschlegel.com/image-compression-principal-
component-analysis/



Factor Analysis
Matrix factorization is also compression

Figure: https://www.aaronschlegel.com /image-compression-principal-
component-analysis/



Examples from bioengineering

Process control
> Large bioreactor runs may be recorded in a database, along
with a variety of measurements from those runs
» We may be interested in how those different runs varied, and
how each factor relates to one another
» Plotting a compressed version of that data can indicate when
an anomolous change is present



Examples from bioengineering

Mutational processes
» Anytime multiple contributory factors give rise to a phenomena,
matrix factorization can separate them out
> Will talk about this in greater detail

Cell heterogeneity
» Enormous interest in understanding how cells are similar or

different
» Answer to this can be in millions of different ways

» But cells often follow programs



Principal Components Analysis

Application of matrix factorization

» Each principal component (PC) is linear combination of
uncorrelated attributes / features’

» Ordered in terms of variance

» kth PC is orthogonal to all previous PCs

» Reduce dimensionality while maintaining maximal variance

Y

PCA2




Principal Components Analysis

BOARD



Methods to calculate PCA

> lterative computation
» More robust with high numbers of variables
> Slower to calculate
» NIPALS (Non-linear iterative partial least squares)

» Able to efficiently calculate a few PCs at once
» Breaks down for high numbers of variables (large p)



Practical Notes

PCA

» Implemented within sklearn.decomposition.PCA

» PCA.fit_transform(X) fits the model to X, then provides the
data in principal component space

» PCA.components_ provides the “loadings matrix”, or directions
of maximum variance

» PCA.explained_variance_ provides the amount of variance
explained by each component



PCA

import matplotlib.pyplot as plt
from sklearn import datasets
from sklearn.decomposition import PCA

iris = datasets.load_iris()
X = iris.data
y = iris.target

target_names = iris.target_names

pca = PCA(n_components=2)
X_r = pca.fit(X).transform(X)

# Print PC1 loadings
print (pca.components_[:, 0])
# ...



PCA

# ...
pca = PCA(n_components=2)
X_r = pca.fit(X).transform(X)

# Print PC1 loadings
print (pca.components_[:, 0])

# Print PC1 scores
print(X_r[:, 01)

# Percentage of variance explained for each component
print(pca.explained_variance_ratio_)
# [ 0.92461621 0.05301557]
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Non-negative matrix factorization

Like PCA, except the coefficients in the linear combination
must be non-negative

» Forcing positive coefficients implies an additive combination of
basis parts to reconstruct whole
» Generally leads to zeros for factors that don't contribute



Non-negative matrix factorization

The answer you get will always depend on the error metric,
starting point, and search method

BOARD



What is significant about this?

» The update rule is multiplicative instead of additive
» In the initial values for W and H are non-negative, then W and
H can never become negative
» This guarantees a non-negative factorization
» Will converge to a local maxima
» Therefore starting point matters



Non-negative matrix factorization

The answer you get will always depend on the error metric,
starting point, and search method

» Another approach is to find the gradient across all the variables
in the matrix

» Called coordinate descent, and is usually faster

» Not going to go through implementation
» Will also converge to a local maxima



NMF application: Mutational Processes in Cancer
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NMF application: Mutational Processes

Mutational process
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NMF application: Mutational Processes in Cancer
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NMF application: Mutational Processes in Cancer
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Practical Notes - NMF

» Implemented within sklearn.decomposition.NMF.
> n_components: number of components
> init: how to initialize the search

» solver: ‘cd’ for coordinate descent, or ‘mu’ for multiplicative
update
» 11_ratio: Can regularize fit

» Provides:

> NMF.components_: components x features matrix
» Returns transformed data through NMF.fit_transform()



Summary

PCA

» Preserves the covariation within a dataset

» Therefore mostly preserves axes of maximal variation

» Number of components can vary—in practice more than 2 or 3
rarely helpful

NMF

» Explains the dataset through factoring into two non-negative
matrices

» Much more stable and well-specified reconstruction when
assumptions are appropriate

» Excellent for separating out additive factors



Closing

As always, selection of the appropriate method depends upon
the question being asked.



