# Dimensionality Reduction: PCA and NMF

Aaron Meyer

# Outline

Administrative Issues

- Decomposition methods
  - Factor analysis
  - Principal components analysis
  - Non-negative matrix factorization

# Dealing with many variables

So far we've largely concentrated on cases in which we have relatively large numbers of measurements for a few variables

This is frequently refered to as n > p

- Two other extremes are imporant
  - Many observations and many variables
  - Many variables but few observations (p > n)

# Dealing with many variables

Usually when we're dealing with many variables, we don't have a great understanding of how they relate to each other

- E.g. if gene X is high, we can't be sure that will mean gene Y will be too
- If we had these relationships, we could reduce the data
  - E.g. if we had variables to tell us it's 3 pm in Los Angeles, we don't need one to say it's daytime

# **Dimensionality Reduction**

Generate a low-dimensional encoding of a high-dimensional space

Purposes:

- Data compression / visualization
- Robustness to noise and uncertainty
- Potentially easier to interpret

Bonus: Many of the other methods from the class can be applied after dimensionality reduction with little or no adjustment!

## Matrix Factorization

Many (most?) dimensionality reduction methods involve matrix factorization

Basic Idea: Find two (or more) matrices whose product best approximate the original matrix

Low rank approximation to original  $N \times M$  matrix:

### $\mathbf{X} \approx \mathbf{W} \mathbf{H}^T$

where **W** is  $N \times R$ ,  $\mathbf{H}^T$  is  $M \times R$ , and  $R \ll N$ .

# Matrix Factorization



Generalization of many methods (e.g., SVD, QR, CUR, Truncated SVD, etc.)

Aside - What should R be?

### $\mathbf{X} \approx \mathbf{W} \mathbf{H}^T$

where  $\mathbf{W}$  is  $M \times R$ ,  $\mathbf{H}^T$  is  $M \times R$ , and  $R \ll N$ .

## Matrix Factorization Matrix factorization is also compression



Figure: https://www.aaronschlegel.com/image-compression-principal-component-analysis/

## Factor Analysis Matrix factorization is also compression



Figure: https://www.aaronschlegel.com/image-compression-principal-component-analysis/

### Factor Analysis Matrix factorization is also compression



Figure: https://www.aaronschlegel.com/image-compression-principal-component-analysis/

# Examples from bioengineering

#### Process control

- Large bioreactor runs may be recorded in a database, along with a variety of measurements from those runs
- We may be interested in how those different runs varied, and how each factor relates to one another
- Plotting a compressed version of that data can indicate when an anomolous change is present

# Examples from bioengineering

#### Mutational processes

- Anytime multiple contributory factors give rise to a phenomena, matrix factorization can separate them out
- Will talk about this in greater detail

### Cell heterogeneity

- Enormous interest in understanding how cells are similar or different
- Answer to this can be in millions of different ways
- But cells often follow programs

# Principal Components Analysis

### Application of matrix factorization

- Each principal component (PC) is linear combination of uncorrelated attributes / features'
- Ordered in terms of variance
- kth PC is orthogonal to all previous PCs
- Reduce dimensionality while maintaining maximal variance



Principal Components Analysis

BOARD

## Methods to calculate PCA

#### Iterative computation

- More robust with high numbers of variables
- Slower to calculate
- NIPALS (Non-linear iterative partial least squares)
  - Able to efficiently calculate a few PCs at once
  - Breaks down for high numbers of variables (large p)

## **Practical Notes**

### PCA

Implemented within sklearn.decomposition.PCA

- PCA.fit\_transform(X) fits the model to X, then provides the data in principal component space
- PCA.components\_ provides the "loadings matrix", or directions of maximum variance
- PCA.explained\_variance\_ provides the amount of variance explained by each component

```
import matplotlib.pyplot as plt
from sklearn import datasets
from sklearn.decomposition import PCA
```

```
iris = datasets.load_iris()
```

```
X = iris.data
y = iris.target
target_names = iris.target_names
```

```
pca = PCA(n_components=2)
X_r = pca.fit(X).transform(X)
```

```
# Print PC1 loadings
print(pca.components_[:, 0])
# ...
```

# PCA

```
# ...
pca = PCA(n_components=2)
X_r = pca.fit(X).transform(X)
```

```
# Print PC1 loadings
print(pca.components_[:, 0])
```

```
# Print PC1 scores
print(X_r[:, 0])
```

# Percentage of variance explained for each component
print(pca.explained\_variance\_ratio\_)
# [ 0.92461621 0.05301557]

PCA



# Non-negative matrix factorization

Like PCA, except the coefficients in the linear combination must be non-negative

- Forcing positive coefficients implies an additive combination of basis parts to reconstruct whole
- Generally leads to zeros for factors that don't contribute

## Non-negative matrix factorization

The answer you get will always depend on the error metric, starting point, and search method BOARD

# What is significant about this?

- The update rule is multiplicative instead of additive
- In the initial values for W and H are non-negative, then W and H can never become negative
- This guarantees a non-negative factorization
- Will converge to a local maxima
  - Therefore starting point matters

# Non-negative matrix factorization

The answer you get will always depend on the error metric, starting point, and search method

- Another approach is to find the gradient across all the variables in the matrix
- Called coordinate descent, and is usually faster
- Not going to go through implementation
- Will also converge to a local maxima



Figure: Helleday et al, Nat Rev Gen, 2014



Figure: Helleday et al, Nat Rev Gen, 2014



Figure: Alexandrov et al, Cell Rep, 2013



Figure: Alexandrov et al, Cell Rep, 2013

## Practical Notes - NMF

Implemented within sklearn.decomposition.NMF.

- n\_components: number of components
- init: how to initialize the search
- solver: 'cd' for coordinate descent, or 'mu' for multiplicative update
- 11\_ratio: Can regularize fit

#### Provides:

- NMF.components\_: components × features matrix
- Returns transformed data through NMF.fit\_transform()

# Summary

### PCA

- Preserves the covariation within a dataset
- Therefore mostly preserves axes of maximal variation
- Number of components can vary—in practice more than 2 or 3 rarely helpful

### NMF

- Explains the dataset through factoring into two non-negative matrices
- Much more stable and well-specified reconstruction when assumptions are appropriate
- Excellent for separating out additive factors

As always, selection of the appropriate method depends upon the question being asked.