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Dimensionality Reduction: PCA and NMF

Aaron Meyer



2 / 31

Outline

I Administrative Issues
I Decomposition methods

I Factor analysis
I Principal components analysis
I Non-negative matrix factorization
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Dealing with many variables

I So far we’ve largely concentrated on cases in which we have 

relatively large numbers of measurements for a few variables
I This is frequently refered to as n > p

I Two other extremes are imporant
I Many observations and many variables
I Many variables but few observations (p > n)
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Dealing with many variables

Usually when we’re dealing with many variables, we don’t 

have a great understanding of how they relate to each other

I E.g. if gene X is high, we can’t be sure that will mean gene Y 

will be too
I If we had these relationships, we could reduce the data

I E.g. if we had variables to tell us it’s 3 pm in Los Angeles, we 

don’t need one to say it’s daytime
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Dimensionality Reduction

Generate a low-dimensional encoding of a high-dimensional 

space

Purposes:

I Data compression / visualization
I Robustness to noise and uncertainty
I Potentially easier to interpret

Bonus: Many of the other methods from the class can be applied 

after dimensionality reduction with little or no adjustment!
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Matrix Factorization

Many (most?) dimensionality reduction methods involve matrix 

factorization

Basic Idea: Find two (or more) matrices whose product best approxi-

mate the original matrix

Low rank approximation to original N ×M  matrix:

X ≈ WHT

where W is N ×R, HT  is M ×R, and R � N .
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Matrix Factorization

Generalization of many methods (e.g., SVD, QR, CUR, Truncated 

SVD, etc.)
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Aside - What should R be?

X ≈ WHT

where W is M ×R, HT  is M ×R, and R � N .
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Matrix Factorization
Matrix factorization is also compression

Figure: https://www.aaronschlegel.com/image-compression-principal-

component-analysis/
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Factor Analysis
Matrix factorization is also compression

Figure: https://www.aaronschlegel.com/image-compression-principal-

component-analysis/
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Factor Analysis
Matrix factorization is also compression

Figure: https://www.aaronschlegel.com/image-compression-principal-

component-analysis/
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Examples from bioengineering

Process control

I Large bioreactor runs may be recorded in a database, along 

with a variety of measurements from those runs
I We may be interested in how those different runs varied, and 

how each factor relates to one another
I Plotting a compressed version of that data can indicate when 

an anomolous change is present
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Examples from bioengineering

Mutational processes

I Anytime multiple contributory factors give rise to a phenomena, 

matrix factorization can separate them out
I Will talk about this in greater detail

Cell heterogeneity

I Enormous interest in understanding how cells are similar or 

different
I Answer to this can be in millions of different ways
I But cells often follow programs
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Principal Components Analysis

Application of matrix factorization

I Each principal component (PC) is linear combination of

uncorrelated attributes / features’
I Ordered in terms of variance
I kth PC is orthogonal to all previous PCs
I Reduce dimensionality while maintaining maximal variance
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Principal Components Analysis

BOARD
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Methods to calculate PCA

I Iterative computation
I More robust with high numbers of variables
I Slower to calculate

I NIPALS (Non-linear iterative partial least squares)
I Able to efficiently calculate a few PCs at once
I Breaks down for high numbers of variables (large p)
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Practical Notes

PCA

I Implemented within sklearn.decomposition.PCA
I PCA.fit_transform(X) fits the model to X, then provides the 

data in principal component space
I PCA.components_ provides the “loadings matrix”, or directions 

of maximum variance
I PCA.explained_variance_ provides the amount of variance 

explained by each component
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PCA

import matplotlib.pyplot as plt

from sklearn import datasets

from sklearn.decomposition import PCA

iris = datasets.load_iris()

X = iris.data

y = iris.target

target_names = iris.target_names

pca = PCA(n_components=2)

X_r = pca.fit(X).transform(X)

# Print PC1 loadings

print(pca.components_[:, 0])

# ...
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PCA

# ...

pca = PCA(n_components=2)

X_r = pca.fit(X).transform(X)

# Print PC1 loadings

print(pca.components_[:, 0])

# Print PC1 scores

print(X_r[:, 0])

# Percentage of variance explained for each component

print(pca.explained_variance_ratio_)

# [ 0.92461621  0.05301557]
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PCA
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Non-negative matrix factorization

Like PCA, except the coefficients in the linear combination 

must be non-negative

I Forcing positive coefficients implies an additive combination of 

basis parts to reconstruct whole
I Generally leads to zeros for factors that don’t contribute



22 / 31

Non-negative matrix factorization

The answer you get will always depend on the error metric, 

starting point, and search method

BOARD
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What is significant about this?

I The update rule is multiplicative instead of additive
I In the initial values for W and H are non-negative, then W and 

H can never become negative
I This guarantees a non-negative factorization
I Will converge to a local maxima

I Therefore starting point matters
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Non-negative matrix factorization

The answer you get will always depend on the error metric, 

starting point, and search method

I Another approach is to find the gradient across all the variables 

in the matrix
I Called coordinate descent, and is usually faster
I Not going to go through implementation
I Will also converge to a local maxima
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NMF application: Mutational Processes in Cancer

Figure: Helleday et al, Nat Rev Gen, 2014
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NMF application: Mutational Processes in Cancer

Figure: Helleday et al, Nat Rev Gen, 2014
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NMF application: Mutational Processes in Cancer

Figure: Alexandrov et al, Cell Rep, 2013
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NMF application: Mutational Processes in Cancer

Figure: Alexandrov et al, Cell Rep, 2013
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Practical Notes - NMF

I Implemented within sklearn.decomposition.NMF.
I n_components: number of components
I init: how to initialize the search
I solver: ‘cd’ for coordinate descent, or ‘mu’ for multiplicative 

update
I l1_ratio: Can regularize fit

I Provides:
I NMF.components_: components x features matrix
I Returns transformed data through NMF.fit_transform()
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Summary

PCA

I Preserves the covariation within a dataset
I Therefore mostly preserves axes of maximal variation
I Number of components can vary—in practice more than 2 or 3 

rarely helpful

NMF

I Explains the dataset through factoring into two non-negative

matrices
I Much more stable and well-specified reconstruction when 

assumptions are appropriate
I Excellent for separating out additive factors
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Closing

As always, selection of the appropriate method depends upon 

the question being asked.


