Dynamical models

Aaron Meyer

Outline

- Administrative Issues
- Review ODE models
- Some common constructions
- Classic analysis:
- Stability analysis
- Pseudo-steady-state
- Implementation:
- Numerical integration
- Stiff systems
- Matrix exponentials

Slides partly adapted from those by Bruce Tidor.

Ordinary Differential Equations

- ODE models are typically most useful when we already have an idea of the system components
- As opposed to data-driven approaches when we don't know how to connect the data
- Incredibly powerful for making specific predictions about how a system works
- Limits of these approaches:
- Results can be extremely sensitive to missing components or model errors
- Can quickly explode in complexity
- May rely on variables that are impossible to measure

Applications of ODE models: Molecular kinetics

Remember BE100!

Let's say we have to ligands that dimerize, then this dimer binds to a receptor as one unit:

$$
\begin{aligned}
& L_{f}+L_{f} \leftrightarrow L_{D} \\
& L_{D}+R_{f} \leftrightarrow R_{b}
\end{aligned}
$$

If we want to know about how these species interact, we can model their behavior with the rate equations that describe this process.

Applications of ODE models: Pharmacokinetics

Applications of ODE models: Pharmacokinetics

- Central compartment corresponds to the plasma in the body.
- V_{1} is the distribution volume of plasma in the body.
- C_{1} is the concentration of drug in the plasma.
- Peripheral compartment represents a group of organs that significantly take up the particular drug.
- V_{2} is the volume of these group of organs.
- C_{2} is the concentration of drug in the group of organs.

Applications of ODE models: Pharmacokinetics

- k_{e} is the rate constant for clearance.
- $k_{e} C_{1} V_{1}$ is the mass of drug/time that's cleared.
- k_{1} is the rate constant for mass transfer from the central to peripheral compartment.
- $k_{1} C_{1} V_{1}$ is the mass of drug/time that transfers from the central to peripheral compartment.
- k_{2} is the rate constant for mass transfer from the peripheral to central compartment.
- $k_{2} C_{2} V_{2}$ is the mass of drug/time that transfers from the peripheral to the central compartment.

Applications of ODE models: Pharmacokinetics

- Have a bolus i.v. injection
- No drug in both compartments for $\mathrm{t}<0$
- D $\mu \mathrm{g}$ of drug administered at once at $\mathrm{t}=0$
- Drug distribution occurs instantaneously in the central compartment.
- Also get well-mixed instantaneously.
- Concentration in central compartment at $t=0$ is $\mathrm{D} \mu \mathrm{g} / \mathrm{mL}$
- No chemical reactions in the compartment

Applications of ODE models: Population kinetics

Lotka-Volterra Equations

Note about difference from other models we've covered

- ODE models can be part of inference techniques just as elsewhere
- If we have a symbolic integral, then fitting an ODE model to data is just non-linear least squares
- But we often don't have a symbolic expression of the answer
- Have to simulate the model every time
- Can only focus on the input-output we get from the black box
- In this respect, what we do with ODE models will be very similar to what you could do with any computational simulation

Analytic vs Numerical Modeling

- Analytic
- Wider range of parameters
- Avoid numerical problems
- Physical intuition more direct
- Often must simplify model
- Numerical
- Can handle complex models
- Dependence on parameters \& initial conditions
- Physical insight may be difficult to extract
- Convergence, numerical stability

Reality often requires handling in between:

- Use analytic treatment to study entire parameter space
- Use numerical treatment to study interesting regions
- Use both to handle complex behavior

Stability Analysis

- Can solve for steady-states of a system

$$
\frac{\delta F}{\delta t}=0
$$

- Results of this can be both stable or unstable points
- With stable points, slope of $\frac{\delta F}{\delta t}$ is negative
- In multivariate case, this means eigenvalues of Jacobian are negative
- Steady-state points aren't necessarily realistic or feasible!
- NNLSQ can solve for points
- Only simulating system ensures they are accessible

Generalization

- Linear models are easier to simulate and understand than non-linear
- Linearity: If \mathbf{x}_{1} and \mathbf{x}_{2} are both solutions, then $c_{1} \mathbf{x}_{1}+c_{2} \mathbf{x}_{2}$ is also a solution
- Linear systems tend to be separable (effective decoupling)
- Non-linear systems exhibit interesting properties

Linearity \& Separability

$$
\left(\begin{array}{l}
a^{\prime} \\
b^{\prime} \\
c^{\prime} \\
d^{\prime}
\end{array}\right)=\left(\begin{array}{llll}
\kappa_{11} & \kappa_{12} & \kappa_{13} & \kappa_{14} \\
\kappa_{21} & \kappa_{22} & \kappa_{23} & \kappa_{24} \\
\kappa_{31} & \kappa_{32} & \kappa_{33} & \kappa_{34} \\
\kappa_{41} & \kappa_{42} & \kappa_{43} & \kappa_{44}
\end{array}\right) \cdot\left(\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right) \quad\left(\begin{array}{l}
\alpha^{\prime} \\
\beta^{\prime} \\
\gamma^{\prime} \\
\delta^{\prime}
\end{array}\right)=\left(\begin{array}{cccc}
\lambda_{11} & 0 & 0 & 0 \\
0 & \lambda_{22} & 0 & 0 \\
0 & 0 & \lambda_{33} & 0 \\
0 & 0 & 0 & \lambda_{44}
\end{array}\right) \cdot\left(\begin{array}{l}
\alpha \\
\beta \\
\gamma \\
\delta
\end{array}\right)
$$

Phase Portraits

$$
\left.\begin{array}{l}
\dot{x}_{1}=f_{1}\left(x_{1}, x_{2}\right) \\
\dot{x}_{2}=f_{2}\left(x_{1}, x_{2}\right)
\end{array}\right\} \longrightarrow \dot{\vec{x}}=\vec{f}(\vec{x})
$$

Non-linear systems

- No general analytic approach to finding trajectory
- So, goal is to understand qualitative trajectory behavior

Features in Phase Portraits

Solving a Set of Equations for Phase Portrait

- Numerical computation
- i.e., Runge-Kutta integration
- Qualitative
- Sufficient for some purposes
- Analytic
- Elegant, though not always tractable

Example - fixed points

$$
\begin{aligned}
& \dot{x}=x+e^{-y} \\
& \dot{y}=-y
\end{aligned}
$$

Nonlinear, because

can't be represented as

$$
\begin{aligned}
& \dot{x}=a x+b y \\
& \dot{y}=c x+d y
\end{aligned}
$$

Step 1: Find fixed points
Fixed points (also called stationary points) are those points where the time-derivative of each coordinate is zero. $\quad \dot{x}=0$ and $\dot{y}=0$

$$
\begin{array}{llc}
0=x+e^{-y} & \Rightarrow & -x=e^{-y}=1 \\
0=-y & \Rightarrow & y=0
\end{array}
$$

Thus, one fixed point at $(x, y)=(-1,0)$

Example - stability

Step 2: Determine stability of fixed points

- If the systems moves slightly away from each fixed point, will it return or will it move further away?
- Another way to ask the same question is to ask whether, as time approaches infinity, does the system tend toward or away from a given stable point.
- Note y solution must be of form:
- $y=y_{0} e^{-t}$ (because $\dot{y}=\frac{d y}{d t}=-y$)
- So $y \rightarrow 0$ for $t \rightarrow \infty$
- Thus, $\dot{x}=x+e^{-y}$ becomes $\dot{x} \rightarrow x+1$ for long times
- This has exponentially growing solutions
- Toward ∞ for $x>-1$ and $-\infty$ for $x<-1$

Thus, overall solution grows exponentially in at least one dimension, and so is unstable.

Example - nullclines

Step 3: Sketch nullclines

Nullclines are the sets of points for which $\dot{x}=0$ or $\dot{y}=0$, so flow is either horizontal or vertical.
$\dot{y}=0$ for $0=-y \rightarrow y=0 \Rightarrow$ flow is horizontal at $\mathrm{x}-$ axis
$\dot{x}=x+1$ here, so flow is to the right for $x>-1$
Flow is vertical for $\dot{x}=0 \rightarrow 0=x+e^{-y}$
The nullclines partition the
space into classes of flow
direction:
$\dot{x}, \dot{y}\left\{\begin{array}{l}\dot{x}<0 \\ \dot{y}<0\end{array}\right.$

Example - computed

Step 4: Plot flow lines

Existence \& Uniqueness

Non-linear $\dot{\mathbf{x}}=f(\mathbf{x})$ and given an initial condition.

- Existence and uniqueness of solution guaranteed if f is continuously differentiable
- Corollary: Trajectories do not intersect, because if they did, then there would be two solutions for the same initial condition at the crossing point

Linearization About Fixed Points

$$
\begin{aligned}
& \text { Let }\left\{\begin{array}{l}
\dot{x}=f(x, y) \\
\dot{y}=g(x, y)
\end{array}\right\} \text { be a non - linear system with fixed point }\left(x^{*}, y^{*}\right) \\
& 0=f\left(x^{*}, y^{*}\right)=g\left(x^{*}, y^{*}\right) \\
& \text { Let }\left\{\begin{array}{l}
u=x-x^{*} \\
v=y-y^{*}
\end{array}\right\} \text { be deviations from fixed point } \\
& \downarrow \text { Change of variable } \\
& \dot{u}=\dot{x} \quad\left(x^{*} \text { is constant }\right) \\
& =f\left(u+x^{*}, v+y^{*}\right) \quad \text { linear } \\
& =f\left(*^{*}, y^{0}\right)+u \frac{\partial f}{\partial x}+v \frac{\partial f}{\partial y}+O\left(u^{2}, v^{2}, u v\right) \text { Taylor series expansion } \\
& \text { Likewise, } \dot{v}=u \frac{\partial g}{\partial x}+v \frac{\partial g}{\partial y}+O\left(u^{2}, v^{2}, u v\right)
\end{aligned}
$$

Solving Linearized Systems

$$
\begin{array}{cc}
\binom{\dot{u}}{\dot{v}}=\left(\begin{array}{ll}
\frac{\partial f}{\partial x} & \frac{\partial f}{\partial y} \\
\frac{\partial g}{\partial x} & \frac{\partial g}{\partial y}
\end{array}\right) \cdot\binom{u}{v} & \\
\dot{\vec{x}}=\vec{A} \vec{x} \quad \vec{A}=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \quad \text { let } \vec{x}(t)=e^{\lambda t} \vec{v} & \\
\lambda e^{\lambda t} \vec{v}=\vec{A} e^{\lambda t} \vec{v} \quad \lambda \vec{v}=\vec{A} \vec{v} \\
\left(\begin{array}{ll}
\vec{A}-\lambda I) \vec{v}=0
\end{array}\right. & \\
\left(\begin{array}{cc}
a-\lambda & b \\
c & d-\lambda
\end{array}\right) \vec{v}=0 & \begin{array}{l}
\text { If } \lambda_{1} \neq \lambda_{2}, \text { then } v_{1} \& v_{2} \\
\text { are linearly independent } \\
\text { and solutions of the }
\end{array} \\
\operatorname{det}\left(\begin{array}{cc}
a-\lambda & b \\
c & d-\lambda
\end{array}\right)=0 & \tau=\operatorname{trace} \\
(a-\lambda)(d-\lambda)-b c=0 & \Delta=\text { determinant } \\
\lambda^{2}-\tau \lambda+\Delta=0 & \begin{array}{l}
\text { following form are valid. } \\
\vec{x}(t)=c_{1} e^{\lambda_{1} t} \vec{v}_{1}+c_{2} e^{\lambda_{2} t} \vec{v}_{2}
\end{array} \\
\lambda_{1}=\frac{\tau+\sqrt{\tau^{2}-4 \Delta}}{2} \quad \lambda_{2}=\frac{\tau-\sqrt{\tau^{2}-4 \Delta}}{2} &
\end{array}
$$

Example

$$
\begin{aligned}
& \left.\begin{array}{l}
\dot{x}=x+y \\
\dot{y}=4 x-2 y \\
(x, y)_{t=0}=(2,-3)
\end{array}\right\} \begin{array}{cc}
\tau=-1 \\
\rightarrow=-6
\end{array}\left\{\begin{array}{cc}
\lambda_{1}=2 & \vec{v}_{1}=\binom{1}{1} \\
\lambda_{2}=-3 & \vec{v}_{2}=\binom{1}{-4}
\end{array}\right. \\
& \vec{x}(t)=c_{1}\binom{1}{1} e^{2 t}+c_{2}\binom{1}{-4} e^{-3 t} \quad \text { with } c_{1}=c_{2}=1 \text { from init. cond } .
\end{aligned}
$$

Can draw phase portrait directly from eigenvalues \& eigenvectors:

More Examples

Also, equal eigenvalues lead to stars \& degenerate nodes

Classification of Fixed Points

Relevance for Nonlinear Dynamics

- So, we have said that we can find fixed points of nonlinear dynamics, linearize about each fixed point, and characterize the dynamics about each fixed point in the non-linear model by the corresponding linear model.
- Is this always true? Do the nonlinearities ever disturb this approach?
- A theorem can be proven which states
- That all the regions on the previous slide are "robust" (nodes, spirals, saddles) and correspond between linear and nonlinear models.
- But that all the lines on the previous slide are "delicate" (centers, stars, degenerate nodes, non-isolated fixed points) and can have different behaviors in linear and non-linear models.

Bifurcations

- The phase portraits we have been looking at describe the trajectory of the system for a given set of initial conditions. However, for "fixed" parameters (rate constants in eqns, for instance).
- What we might like is a series of phase portraits corresponding to different sets of parameters.
- Many will be qualitatively similar. The interesting ones will be where a small change of parameters creates a qualitative change in the phase portrait (bifurcations).
- What we will find is that fixed points \& closed orbits can be created/destroyed and stabilized/destabilized.

Saddle-Node Bifurcation

$$
\begin{aligned}
& \dot{x}=\mu-x^{2} \\
& \dot{y}=-y
\end{aligned}
$$

$\mu>0$

$\mu=0$

Genetic Control Network

Griffith (1971) model of genetic control:

- $\mathrm{x}=$ protein concentration
- $y=m R N A$ concentration
$\dot{x}=-a x+y \quad$ protein degrades and is synthesized from mRNA
$\dot{y}=\frac{x^{2}}{1+x^{2}}-b y$ mRNA degrades and is stimulated by protein dimer

Genetic Control Network

Biochemical version of a bistable switch:

1. Only stable points are no protein and mRNA or a fixed composition
2. If degradation rates too great, only stable point is origin

Implementation - Testing

- Many properties one can test
- Mass balance
- Changes upon parameter adjustment
- Good to test these before and after integration

Implementation

SciPy provides two interfaces for ODE solving:

- scipy.integrate.ode
- scipy.integrate.odeint

Notes:

- Both can solve stiff and non-stiff equations.
- ode has a number of different methods. Pay attention to the "set_integrator" option.

Implementation - Example

The second order differential equation for the angle θ of a pendulum acted on by gravity with friction can be written:

$$
\theta^{\prime \prime}(t)+b * \theta^{\prime}(t)+c * \sin (\theta(t))=0
$$

where b and c are positive constants, and a prime (') denotes a derivative. To solve this equation with odeint, we must first convert it to a system of first order equations. By defining the angular velocity $\omega(t)=\theta^{\prime}(t)$, we obtain the system:

$$
\theta^{\prime}(t)=\omega(t)
$$

$$
\omega^{\prime}(t)=-b * \omega(t)-c * \sin (\theta(t))
$$

Implementation - Example

Let y be the vector $[\theta, \omega]$. We implement this system in python as:

```
def pend(y, t, b, c):
    theta, omega = y
    dydt = [omega, -b*omega - c*np.sin(theta)]
    return dydt
```

We assume the constants are $b=0.25$ and $c=5.0$:
b, $c=0.25,5.0$

Implementation - Example

For initial conditions, we assume the pendulum is nearly vertical with $\theta(0)=\pi-0.1$, and it initially at rest, so $\omega(0)=0$. Then the vector of initial conditions is
$\mathrm{y} 0=[n \mathrm{p} . \mathrm{pi}-0.1,0.0]$

We generate a solution 101 evenly spaced samples in the interval $0 \leq t \leq 10$. So our array of times is:
$\mathrm{t}=\mathrm{np} . \operatorname{linspace}(0,10,101)$

Implementation - Example

Call odeint to generate the solution. To pass the parameters b and c to pend, we give them to odeint using the args argument.
from scipy.integrate import odeint sol = odeint(pend, y0, t, args=(b, c))

The solution is an array with shape $(101,2)$. The first column is $\theta(t)$, and the second is $\omega(t)$. The following code plots both components.

Implementation - Example

```
import matplotlib.pyplot as plt
plt.plot(t, sol[:, 0], 'b', label='theta(t)')
plt.plot(t, sol[:, 1], 'g', label='omega(t)')
plt.legend(loc='best')
plt.xlabel('t')
plt.grid()
plt.show()
```


Implementation - Example

Implementation - Stiff Systems

- Very roughly, most ODE solvers take steps inversely proportional to the rate at which the state is changing
- For systems where there are two processes operating on differing timescales, this can be problematic
- If everything happens really fast, the system will come to equilibrium quickly
- If everything is slow, you can take longer steps
- Stiff solvers additionally require the Jacobian matrix
- This very roughly allows them to keep track of these differences in timescales
- odeint can automatically find this for you
- Sometimes it's faster/better to provide this as parameter Dfun

Implementation - Matrix Exponential

If J is the Jacobian matrix of an ODE model, $y(t)=e^{J t} y_{0}$.
Matrix exponential is also implemented.

- scipy.linalg.expm
- This method is numerically stable, but there are faster implementations elsewhere.
- A commonly used package is expokit

For linear systems, this can be $>1000 x$ faster.

Further Reading

- scipy.linalg.expm
- scipy.integrate.odeint
- Steven Strogatz, Nonlinear Dynamics and Chaos

