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Dynamical models
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Outline

I Administrative Issues
I Review ODE models

I Some common constructions

I Classic analysis:
I Stability analysis
I Pseudo-steady-state

I Implementation:
I Numerical integration
I Stiff systems
I Matrix exponentials

Slides partly adapted from those by Bruce Tidor.
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Ordinary Differential Equations

I ODE models are typically most useful when we already have an 

idea of the system components
I As opposed to data-driven approaches when we don’t know how 

to connect the data
I Incredibly powerful for making specific predictions about how a 

system works

I Limits of these approaches:
I Results can be extremely sensitive to missing components or 

model errors
I Can quickly explode in complexity
I May rely on variables that are impossible to measure
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Applications of ODE models: Molecular kinetics

Remember BE100!

Let’s say we have to ligands that dimerize, then this dimer binds to 

a receptor as one unit:

Lf + Lf ↔ LD

LD +Rf ↔ Rb

If we want to know about how these species interact, we can model 

their behavior with the rate equations that describe this process.
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Applications of ODE models: Pharmacokinetics
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Applications of ODE models: Pharmacokinetics

I Central compartment corresponds to the plasma in the body.
I V1 is the distribution volume of plasma in the body.
I C1 is the concentration of drug in the plasma.

I Peripheral compartment represents a group of organs that 

significantly take up the particular drug.
I V2 is the volume of these group of organs.
I C2 is the concentration of drug in the group of organs.
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Applications of ODE models: Pharmacokinetics

I ke is the rate constant for clearance.
I keC1V1 is the mass of drug/time that’s cleared.

I k1 is the rate constant for mass transfer from the central to 

peripheral compartment.
I k1C1V1 is the mass of drug/time that transfers from the central 

to peripheral compartment.

I k2 is the rate constant for mass transfer from the peripheral to 

central compartment.
I k2C2V2 is the mass of drug/time that transfers from the 

peripheral to the central compartment.
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Applications of ODE models: Pharmacokinetics

I Have a bolus i.v. injection
I No drug in both compartments for t<0
I D μg of drug administered at once at t=0
I Drug distribution occurs instantaneously in the central 

compartment.
I Also get well-mixed instantaneously.
I Concentration in central compartment at t = 0 is D μg/mL

I No chemical reactions in the compartment
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Applications of ODE models: Population kinetics

Lotka-Volterra Equations
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Note about difference from other models we’ve covered

I ODE models can be part of inference techniques just as 

elsewhere
I If we have a symbolic integral, then fitting an ODE model to 

data is just non-linear least squares

I But we often don’t have a symbolic expression of the answer
I Have to simulate the model every time
I Can only focus on the input-output we get from the black box

I In this respect, what we do with ODE models will be very 

similar to what you could do with any computational simulation
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Analytic vs Numerical Modeling

I Analytic
I Wider range of parameters
I Avoid numerical problems
I Physical intuition more direct
I Often must simplify model

I Numerical
I Can handle complex models
I Dependence on parameters & initial conditions
I Physical insight may be difficult to extract
I Convergence, numerical stability

Reality often requires handling in between:

I Use analytic treatment to study entire parameter space
I Use numerical treatment to study interesting regions
I Use both to handle complex behavior
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Stability Analysis

I Can solve for steady-states of a system

δF

δt
= 0

I Results of this can be both stable or unstable points
I With stable points, slope of δFδt  is negative
I In multivariate case, this means eigenvalues of Jacobian are 

negative

I Steady-state points aren’t necessarily realistic or feasible!
I NNLSQ can solve for points
I Only simulating system ensures they are accessible
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Generalization

I Linear models are easier to simulate and understand than 

non-linear
I Linearity: If x1 and x2 are both solutions, then c1x1 + c2x2 is 

also a solution

I Linear systems tend to be separable (effective decoupling)
I Non-linear systems exhibit interesting properties
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Linearity & Separability

2

• Linear models are easier to simulate and 
understand than non-linear

Generalization

understand than non linear
– Linearity:  

If x1 and x2 are both solutions, 
then c1x1 + c2x2 is also a solution

– Linear systems tend to be separable (effective decoupling)
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• Non-linear systems exhibit interesting properties

Linearity & Separability
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Phase Portraits
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Phase Portraits
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• Non-linear systems
– No general analytic approach to finding trajectory
– So, goal is to understand qualitative trajectory behavior 

Features in Phase Portraits

B

1. Fixed Points (A, B, C).  Steady states

A

B

C
D

2. Closed Orbits (D).  Periodic solutions
3. Flow patterns in trajectory

A & C are similar to each other, different from B

4. Stability of fixed points & closed orbits
A, B, & C are unstable, D is stable

Non-linear systems

I No general analytic approach to finding trajectory
I So, goal is to understand qualitative trajectory behavior
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Features in Phase Portraits

3

Phase Portraits
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Solving a Set of Equations for Phase Portrait

I Numerical computation
I i.e., Runge-Kutta integration

I Qualitative
I Sufficient for some purposes

I Analytic
I Elegant, though not always tractable
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Example – fixed points

4

Solving a Set of Equations for Phase Portrait

• Numerical computation 
– i e Runge-Kutta integration– i.e., Runge-Kutta integration

• Qualitative
– Is often sufficient for most purposes

• Analytic
– Elegant, though not always tractable

Example – fixed points
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Example – stability

Step 2: Determine stability of fixed points

I If the systems moves slightly away from each fixed point, will it 

return or will it move further away?
I Another way to ask the same question is to ask whether, as 

time approaches infinity, does the system tend toward or away 

from a given stable point.
I Note y solution must be of form:

I y = y0e
−t (because ẏ = dy

dt = −y)
I So y → 0 for t → ∞

I Thus, ẋ = x+ e−y becomes ẋ → x+ 1 for long times
I This has exponentially growing solutions
I Toward ∞ for x > −1 and −∞ for x < −1

Thus, overall solution grows exponentially in at least one di-

mension, and so is unstable.
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Example – nullclines

Step 3: Sketch nullclines

Nullclines are the sets of points for which ẋ = 0 or ẏ = 0, so flow is 

either horizontal or vertical.
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Example – stability
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Example – computed

Step 4: Plot flow lines

6

Example – computed

y
Step 4: Plot flow lines

x
–1

Notice that the major 
vertical blue flow line does 
not coincide with the 
nullcline.

This is a non-linear 
version of a saddle point.

Can we identify saddle-like 
behavior in linearized 

version of system?

Existence & Uniqueness

)(xfx &&
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• Existence & uniqueness of solution guaranteed if    
is continuously differentiable

• Corollary: Trajectories do not intersect, because if 
they did, then there would be two solutions for the 

f
&

y ,
same initial condition at the crossing point
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Existence & Uniqueness

Non-linear ẋ = f(x) and given an initial condition.

I Existence and uniqueness of solution guaranteed if f  is 

continuously differentiable
I Corollary: Trajectories do not intersect, because if they did, 

then there would be two solutions for the same initial condition 

at the crossing point
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Linearization About Fixed Points
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Linearization About Fixed Points
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Solving Linearized Systems

7

Linearization About Fixed Points
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Example
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Example
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eigenvalues)

Also, equal eigenvalues lead to stars & degenerate nodes
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More Examples
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Classification of Fixed Points
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Classification of Fixed Points
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Relevance for Nonlinear Dynamics

• So, we have said that we can find fixed points of nonlinear 
dynamics, linearize about each fixed point, and y p
characterize the dynamics about each fixed point in the 
non-linear model by the corresponding linear model.

• Is this always true?  Do the nonlinearities ever disturb this 
approach?

• A theorem can be proven which states 
– That all the regions on the previous slide are “robust” (nodes,That all the regions on the previous slide are robust  (nodes, 

spirals, saddles) and correspond between linear and nonlinear 
models.

– But that all the lines on the previous slide are “delicate” (centers, 
stars, degenerate nodes, non-isolated fixed points) and can have 
different behaviors in linear and non-linear models.
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Relevance for Nonlinear Dynamics

I So, we have said that we can find fixed points of nonlinear 

dynamics, linearize about each fixed point, and characterize the 

dynamics about each fixed point in the non-linear model by the 

corresponding linear model.
I Is this always true? Do the nonlinearities ever disturb this 

approach?
I A theorem can be proven which states

I That all the regions on the previous slide are “robust” (nodes, 

spirals, saddles) and correspond between linear and nonlinear 

models.
I But that all the lines on the previous slide are “delicate” 

(centers, stars, degenerate nodes, non-isolated fixed points) and 

can have different behaviors in linear and non-linear models.
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Bifurcations

I The phase portraits we have been looking at describe the 

trajectory of the system for a given set of initial conditions. 

However, for “fixed” parameters (rate constants in eqns, for 

instance).
I What we might like is a series of phase portraits corresponding 

to different sets of parameters.
I Many will be qualitatively similar. The interesting ones will be 

where a small change of parameters creates a qualitative 

change in the phase portrait (bifurcations).
I What we will find is that fixed points & closed orbits can be 

created/destroyed and stabilized/destabilized.
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Saddle-Node Bifurcation

10

Bifurcations

• The phase portraits we have been looking at describe the 
trajectory of the system for a given set of initial conditions.  j y y g
However, for “fixed” parameters (rate constants in eqns, for 
instance).

• What we might like is a series of phase portraits 
corresponding to different sets of parameters.
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be where a small change of parameters creates abe where a small change of parameters creates a 
qualitative change in the phase portrait (bifurcations).

• What we will find is that fixed points & closed orbits can be 
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Genetic Control Network

Griffith (1971) model of genetic control:

I x = protein concentration
I y = mRNA concentration

11

Genetic Control Network 
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Genetic Control Network
Biochemical version of a bistable switch:

1. Only stable points are no protein and mRNA or a fixed 

composition

2. If degradation rates too great, only stable point is origin

12

Genetic Control Network

Biochemical version of a bistable switch:
(1) only stable points are no protein and mRNA or a fixed composition
(2) if degradation rates too great, only stable point is origin
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Implementation - Testing

I Many properties one can test
I Mass balance
I Changes upon parameter adjustment

I Good to test these before and after integration



34 / 43

Implementation

SciPy provides two interfaces for ODE solving:

I scipy.integrate.ode
I scipy.integrate.odeint

Notes:

I Both can solve stiff and non-stiff equations.
I ode has a number of different methods. Pay attention to the 

“set_integrator” option.

https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.ode.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.odeint.html
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Implementation - Example

The second order differential equation for the angle θ of a pendulum 

acted on by gravity with friction can be written:

θ′′(t) + b ∗ θ′(t) + c ∗ sin(θ(t)) = 0

where b and c are positive constants, and a prime (‘) denotes a 

derivative. To solve this equation with odeint, we must first convert 

it to a system of first order equations. By defining the angular 

velocity ω(t) = θ′(t), we obtain the system:

θ′(t) = ω(t)

ω′(t) = −b ∗ ω(t)− c ∗ sin(θ(t))
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Implementation - Example

Let y be the vector [θ, ω]. We implement this system in python as:

def pend(y, t, b, c):

 theta, omega = y

 dydt = [omega, -b*omega - c*np.sin(theta)]

return dydt

We assume the constants are b = 0.25 and c = 5.0:

b, c = 0.25, 5.0
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Implementation - Example

For initial conditions, we assume the pendulum is nearly vertical with 

θ(0) = π− 0.1, and it initially at rest, so ω(0) = 0. Then the vector 

of initial conditions is

y0 = [np.pi - 0.1, 0.0]

We generate a solution 101 evenly spaced samples in the interval 

0 ≤ t ≤ 10. So our array of times is:

t = np.linspace(0, 10, 101)
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Implementation - Example

Call odeint to generate the solution. To pass the parameters b and 

c to pend, we give them to odeint using the args argument.

from scipy.integrate import odeint

sol = odeint(pend, y0, t, args=(b, c))

The solution is an array with shape (101, 2). The first column is θ(t), 
and the second is ω(t). The following code plots both components.
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Implementation - Example

import matplotlib.pyplot as plt

plt.plot(t, sol[:, 0], 'b', label='theta(t)')

plt.plot(t, sol[:, 1], 'g', label='omega(t)')

plt.legend(loc='best')

plt.xlabel('t')

plt.grid()

plt.show()
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Implementation - Example
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Implementation - Stiff Systems

I Very roughly, most ODE solvers take steps inversely 

proportional to the rate at which the state is changing
I For systems where there are two processes operating on 

differing timescales, this can be problematic
I If everything happens really fast, the system will come to 

equilibrium quickly
I If everything is slow, you can take longer steps

I Stiff solvers additionally require the Jacobian matrix
I This very roughly allows them to keep track of these differences 

in timescales

I odeint can automatically find this for you
I Sometimes it’s faster/better to provide this as parameter Dfun
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Implementation - Matrix Exponential

If J is the Jacobian matrix of an ODE model, y(t) = eJty0.

Matrix exponential is also implemented.

I scipy.linalg.expm
I This method is numerically stable, but there are faster 

implementations elsewhere.

I A commonly used package is expokit

For linear systems, this can be >1000x faster.

https://docs.scipy.org/doc/scipy-0.15.1/reference/generated/scipy.linalg.expm.html
https://www.maths.uq.edu.au/expokit/
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Further Reading

I scipy.linalg.expm
I scipy.integrate.odeint
I Steven Strogatz, Nonlinear Dynamics and Chaos

https://docs.scipy.org/doc/scipy-0.15.1/reference/generated/scipy.linalg.expm.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.odeint.html
https://www.biodyn.ro/course/literatura/Nonlinear_Dynamics_and_Chaos_2018_Steven_H._Strogatz.pdf

