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Common Challenge: Cue/Signal/Response Relationships

Cues
(e.g. growth factors, steroids, ECM)
u [
Signals
(e.g. phosphorylation, transcription)
Due to time scale and multiple
<« -- components, difficult to model
with mechanistic detail
Cell Fates Response

(e.g., proliferation, apoptosis,

migration, differentiation )



Many Methods for Relating a Signal to Response

Say we have some measurement from cells and how they respond:

[1,2,1.5,5,6,7] ~ [5,10,7,24, 31, 35]

From the variation we can see that:

» Low signal is correlated with low response
» High signal is correlated with high response

If we can find a quantitative correlation between the input and output,
we can predict new outcomes for measurements we haven't yet seen.



Challenges with Univariate Relationships
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Figure: Janes, et al. Science, 2005

» The relationship between JNK activation and apoptosis appears
to be highly context-dependent
» Univariate relationships are often insufficient
» Cells respond to an environment with multiple factors present



Notes about Methods Today

» Both methods are supervised learning methods, however have a
number of distinct properties from others we will discuss.

» Learning about PLS is more difficult than it should be, partly
because papers describing it span areas of chemistry,
economics, medicine and statistics, with little agreement on
terminology and notation.

» These methods will show one example of where the model and
algorithm are quite distinct—there are multiple algorithms for
calculating a PLSR model.



Multi-Linear Regression (MLR)

In biology we often have multiple signals and multiple responses that
were measured:

y1 = a1x1 + bixa + €1

Y2 = a1 + bawa + e

This can be written more concisely in matrix notation as:

Y=XB+FE

Where Y is a n X p matrix and X is a n X m matrix; minimizing E
and solving for B:

B=(X'X)"'Xx'y



Underdetermined Systems
If n observations and m variables:

> m < n: no exact solution, least-squares solution possible
» m = n: one solution
» m > n: no unique solution unless we delete independent
variables since X*X cannot be inverted
» m > n is often the case in systems biology!

If a model is underdetermined with multiple solutions, there are two
general approches we can take:

» Regularization: We can use other information we know to focus
on one answer
» Sampling: We can look at all possible models



Regularization

Today we will use regularization.

» We will assume the larger variation in the data is more
meaningful.

» Therefore, we will assume that smaller changes are less
important.

» This is a choice that must be correct for the relevant biological
question at hand.



Principal Components Regression (PCR)

One solution - use the concepts from PCA to reduce dimensionality.

First step: Simply apply PCA!
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Figure: Geladi Analytica Chimica Acta 1986

Dimensionality goes from m to Neomyp.



Principal Components Regression (PCR)

1) Decompose X matrix (scores T, loadings P, residuals E)
X=TP"+E

2) Regress Y against the scores (Scores describe observations — by
using them we link X and Y for each observation)

Y=TB+F



Challenge

How might we determine the number of components using our
prediction?



Potential Problem

» PCs for the X matrix do not necessarily capture X-variation
that is important for Y
» So later PCs are going to be more important to regression
> Example: the first components capture signaling that is related
to another cell fate, while the signals that co-vary for this
particular y are buried in later components

How might we handle this differently?



PLSR

PLSR = partial least squares regression
OR projection to latent structures

Data has values in both X and Y
spaces for each observation

Find PCs for both matrices (while emphasizing the parts of X
that correlate with Y) — will use NIPALs algorithm to construct

the principal components. X = TPt +E
Y = UQt+F
TN T

scores loadings residuals

Eriksson, et al. Multi- and Megavariate Data Analysis 2006




PLSR - NIPALs with Scores Exchanged

Comp 1 (t,) Ya
« Comp 1 (u)

X3

Steps for each component (h)
1) Find scores for Y (u;)

2) Use u, to find the loadings for X (p;,)
3) Use p, to find scores for X (t;)

4) Uset, to find Y loadings (qy)

5) Use q, to calculate uy,

Repeat until get convergence
The scores vectors are related by:

u, = b, t, (U=TB)

This allows us to relate X and Y:
Y=TBQ'+F

Eriksson, et al. Multi- and Megavariate Data Analysis 2006



PLSR - NIPALs with Scores Exchanged

By forcing the X and Y matrices to swap scores vectors we
rotate the principal components toward the independent
variables that link most strongly to the dependent variables.

% y fi=y-J
The first component still p
captures the most information,
and what is in PC1 is subtracted
before PC2 is calculated.

0% L Oorcjection

gves scoret,

Note:

To obtain orthogonal components, p must be replaced with weights (w) in the NIPALS
algorithm. See Geladi, Anal Chim 1986 for more detail.

Data is mean-centered for PLSR. Unit variance scaling can also be applied if the
magnitudes of X values are not considered important.

Eriksson, et al. Multi- and Megavariate Data Analysis 2006



Components in PLSR and PCA Differ
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Determining the Number of Components

The optimal model will have enough components to accurately fit data and be
predictive, but remain simple enough for interpretation. Additionally, the
model is subject to over-fitting constraints.

Three metrics are used to evaluate the utility of adding a new component (a):

R2X: sum of squares for the variation in the X matrix
RX=1- 2(Xmodel a_Xcvbs)2

Xobs

R2Y: sum of squares for the variation in the Y matrix
RY=1- Z(Ymodel,a'Ycubs)2

2 Yobs

Q?2Y: fraction of the total variation in the Y matrix that can be predicted
Q?Y = [1.0 - II(PRESS/SS),]
PRESS = Prediction Error Sum of Squares
1) Remove an individual data element (i,k)
2) Fit model
3) Predict the element i,k that was withheld
(observed,, — predicted; )?
4) Repeat until each element has been withheld once and only once




Determining the Number of Components

Each component contributes to these metrics — we evaluate those contributions and
the cumulative value to determine if adding a new component is beneficial (Q2Y is

prioritized in this evaluation).

With each new component, evaluate the change to the cumulative Q%Y
* Q2 increases significantly (>0.05), keep the component and evaluate the

effect of adding another component
* Q2Y goes down or has minimal change, stop model at the previous

component °
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Variants of PLSR

Discriminant PLSR

Tensor PLSR



Application

Sequential Application of Anticancer
Drugs Enhances Cell Death by
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SUMMARY

Crosstalk and complexity within signaling pathways
and their perturbation by oncogenes limit compo-
nent-by-component approaches to understanding
human disease. Network analysis of how normal
and oncogenic signaling can be rewired by drugs
may provide opportunities to target tumors with
high specificity and efficacy. Using targeted inhibi-
tion of oncogenic signaling pathways, combined
with DNA-damaging chemotherapy, we report that
time-staggered EGFR inhibition, but not simulta-
neous coadministration, dramatically sensitizes

cell death (Harper and Elledge, 2007). The DDR is highly inter-
connected with other progrowth and prodeath signaling
networks, which function together to control cell fate in
anonlinear fashion due to multiple levels of feedback and cross-
talk. Thus, it is difficult to predict a priori how multiple, often
conflicting signals will be processed by the cell, particularly by
malignant cells in which regulatory networks often exist in atyp-
ical forms. Predicting the efficacy of treatment and the optimal
design of combination therapy will require a detailed under-
standing of how the DDR and other molecular signals are inte-
grated and processed, how processing is altered by genetic
perturbations commonly found in tumors, and how networks
can be “rewired” using drugs individually and in combination
(Sachs et al., 2005).
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Figure 2. Prolonged Treatment with Erlotinib Does Not Change Cell-Cycle Profile, Doxorubicin Influx/Efflux, or the Level of DNA Damage

(A-D) Quantitative cell-cycle analysis. DNA content and the percentage of mitotic cells were measured by FACS. () Example FACS plots from untreated BT-20
cells. (B-D) Cell d from thy i each performed in duplicate. Cells were treated as in Figure 1, and data were collected at 6, 8, 12,
24, and 48 hr ater DOX treatment. 8 hr data shown for each celltype.

(E-H) Doxorubicin retention measured by flow cytometry. (E) Sample time course of BT-20 cells treated with 10 M DOX for the indicated times. (F-H) Cells
treated with doxorubicin or pretreated with erlotinib for 24 hr prior to DOX (E — D). Cells were collected at 1, 4, or 8 hr after DOX exposure as indicated, and internal
doxorubicin fluorescence was measured.

(1and J) Quantitative microscopy of the early DNA double-stranded break response. () Example image of cells treated with DOX for 1 hr and stained for yH2AX,
53BP1, or nuclear content (DAPI). (J) Integrated intensity per nucleus of YH2AX and 53BP1 foci was measured in BT-20 cells after the indicated treatments and
times. Mean values + SD from triplicate experiments shown.

(K) Western blot analysis of yH2AX in BT-20 cells. f-actin shown as a loading control.
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Figure 5. A PLS Model Accurately Predicts Phenotypic Responses from Time-Resolved Molecular Signals

‘each treatment condition at a specified time, as indicated by the colors and symbls in the legend.
(B and ) Scores and loadings for a PLS model. (B) Scores calculated and plotted as In (A), except the principal compor\ems now reflect covaration between
signals and responses. (C) PLS loadings plotted for specifc signals and responses projected into principal component spac
(D-) BT-20 cellline-specific model calibration. (D) R?, G, and RMSE for €
respectively, for of BT-20 cells. (G-1) Apoptt 9
nd @ )
targets identified as DEGs in microarray analysis. () Model using only the top four signals: c-caspase-8, c-caspase-6, p-DAPK1, and pH2AX.
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Figure 6. Enhanced Sensitivity to Doxorubicin Is Mediated by Caspase-8 Activation
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() VIP scores for predicting apoptosis plotted for each cell line-specific PLS model. VIP score >1 indicates important x variables that predict y responses,

Wwhereas signals with VIP scores <0.5 indicate unimportant x variables.

(B and C) Model-generated predictions of apoptosis with (blue) or without (red) caspase-8 activation 8 hr after the indicated treatments in BT-20 (B) and 453 (C).

(D and E) Western blot verifying caspase-8 knockdown in BT-20 (D) and 453 ().

(F and G) Measured apoptosis 8 hr after the indicated treatment in cells expressing control RNA or caspase-8 SIRNA. (F) BT-20. (G) 453. In both (F) and (G),

apoptotic values represent mean response +SD from both siRNAs, each in duplicate.
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Practical Notes

PCR

» sklearn does not implement PCR directly

» Can be applied by chaining sklearn.decomposition.PCA
and sklearn.linear_model.LinearRegression

» See: https://scikit-learn.org/stable/auto examples/plot
digits _pipe.html

PLSR

P> sklearn.cross_decomposition.PLSRegression

> Uses M.fit (X, Y) to train

» Can use M.predict(X) to get new predictions

» PLSRegression(n_components=3) to set number of
components on setup

» Or M.n_components = 3 after setup

https://scikit-learn.org/stable/modules/generated /sklearn.cross
decomposition.PLSRegression.html


https://scikit-learn.org/stable/auto_examples/plot_digits_pipe.html
https://scikit-learn.org/stable/auto_examples/plot_digits_pipe.html
https://scikit-learn.org/stable/modules/generated/sklearn.cross_decomposition.PLSRegression.html
https://scikit-learn.org/stable/modules/generated/sklearn.cross_decomposition.PLSRegression.html

Summary

PLSR

» Maximizes the covariance
» Takes into account both the dependent (Y) and independent
(X) data

PCR

» Uses PCA as initial decomp. step, then is just normal linear
regression
» Maximizes the variance explained of the independent (X) data



Summary

Interpreting PLSR

> R?X, R%Y, Q%Y (maximum value of 1)

» Using Q2Y to determine number of components
Scores/loadings

» DModY (lower = better predicton)

» VIP (>1 indicates important)

> Ultimately, these metrics are seconary to whether a
model works upon crossvalidation



Summary

» PLSR is amazingly well at prediction
» This is incredibly powerful

» Interpreting WHY PLSR predicts something can be very
challenging



