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Partial Least Squares Regression

Aaron Meyer



2 / 31

Outline

I Administrative Issues
I Principal Components Regression
I Partial Least Squares Regression
I Some Examples
I Implementation

Adapted from slides by Pam Kreeger.
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Common Challenge: Cue/Signal/Response Relationships

Cue/Signal/Response&Rela*onships&

Response&
(e.g.,&prolifera.on,&apoptosis,&&

migra.on,&differen.a.on)&

Cues&
(e.g.&growth&factors,&steroids,&ECM)&&

Signals&
(e.g.&phosphoryla.on,&transcrip.on)&

Cell$Fates$

Due&to&*me&scale&and&mul*ple&
components,&difficult&to&model&
with&mechanis*c&detail&
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Many Methods for Relating a Signal to Response

Say we have some measurement from cells and how they respond:

[1, 2, 1.5, 5, 6, 7] ∼ [5, 10, 7, 24, 31, 35]

From the variation we can see that:

I Low signal is correlated with low response
I High signal is correlated with high response

If we can find a quantitative correlation between the input and output, 

we can predict new outcomes for measurements we haven’t yet seen.
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Challenges with Univariate Relationships

Figure: Janes, et al. Science, 2005

I The relationship between JNK activation and apoptosis appears 

to be highly context-dependent
I Univariate relationships are often insufficient
I Cells respond to an environment with multiple factors present
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Notes about Methods Today

I Both methods are supervised learning methods, however have a 

number of distinct properties from others we will discuss.
I Learning about PLS is more difficult than it should be, partly 

because papers describing it span areas of chemistry, 

economics, medicine and statistics, with little agreement on 

terminology and notation.
I These methods will show one example of where the model and 

algorithm are quite distinct—there are multiple algorithms for 

calculating a PLSR model.



7 / 31

Multi-Linear Regression (MLR)

In biology we often have multiple signals and multiple responses that 

were measured:

y1 = a1x1 + b1x2 + e1

y2 = a2x1 + b2x2 + e2

This can be written more concisely in matrix notation as:

Y = XB + E

Where Y is a n× p matrix and X is a n×m matrix; minimizing E 

and solving for B:

B = (XtX)−1XtY
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Underdetermined Systems

If n observations and m variables:

I m < n: no exact solution, least-squares solution possible
I m = n: one solution
I m > n: no unique solution unless we delete independent 

variables since XtX cannot be inverted
I m > n is often the case in systems biology!

If a model is underdetermined with multiple solutions, there are two 

general approches we can take:

I Regularization: We can use other information we know to focus 

on one answer
I Sampling: We can look at all possible models
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Regularization

Today we will use regularization.

I We will assume the larger variation in the data is more 

meaningful.
I Therefore, we will assume that smaller changes are less 

important.
I This is a choice that must be correct for the relevant biological 

question at hand.
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Principal Components Regression (PCR)

One solution - use the concepts from PCA to reduce dimensionality.

First step: Simply apply PCA!

Figure: Geladi Analytica Chimica Acta 1986

Dimensionality goes from m to Ncomp.
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Principal Components Regression (PCR)

1) Decompose X matrix (scores T, loadings P, residuals E)

X = TP T + E

2) Regress Y against the scores (Scores describe observations – by 

using them we link X and Y for each observation)

Y = TB + E
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Challenge

How might we determine the number of components using our 

prediction?
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Potential Problem

I PCs for the X matrix do not necessarily capture X-variation 

that is important for Y
I So later PCs are going to be more important to regression

I Example: the first components capture signaling that is related 

to another cell fate, while the signals that co-vary for this 

particular y are buried in later components

How might we handle this differently?
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PLSRPLSR&

Eriksson,&et&al.&Mul*X&and&Megavariate&Data&Analysis&2006&

&PLSR&=&par*al&least&squares&regression&&
& &OR&projec*on&to&latent&structures&

Find&PCs&for&both&matrices&(while&emphasizing&the&parts&of&X&
that&correlate&with&Y)&–&will&use&NIPALs&algorithm&to&construct&
the&principal&components.& X$$=$$TPt$$+$E$

Y$$=$$UQt$+$F$

scores& loadings& residuals&

Data&has&values&in&both&X&and&Y&
spaces&for&each&observa*on&
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PLSR - NIPALs with Scores ExchangedPLSR&–&NIPALs&with&Scores&Exchanged&

Eriksson,&et&al.&Mul*X&and&Megavariate&Data&Analysis&2006&

Steps&for&each&component&(h)&
1)  Find&scores&for&Y$(uh)&

2)  Use&uh&to&find&the&loadings&for&X&(ph)&

3)  Use&ph&to&find&scores&for&X$(th)&

4)  Use&th&to&find&Y$loadings&(qh)&

5)  Use&qh$to&calculate&uh$

Repeat&un*l&get&convergence&
The&scores&vectors&are&related&by:&
&uh&=&bhth$$(U=TB)&

This&allows&us&to&relate&X&and&Y:&
$Y$=$TBQt$+$F&
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PLSR - NIPALs with Scores Exchanged

Eriksson,&et&al.&Mul*X&and&Megavariate&Data&Analysis&2006&

PLSR&–&NIPALs&with&Scores&Exchanged&

By&forcing&the&X&and&Y&matrices&to&swap&scores&vectors&we&
rotate&the&principal&components&toward&the&independent&
variables&that&link&most&strongly&to&the&dependent&variables.&

The&first&component&s*ll&
captures&the&most&informa*on,&
and&what&is&in&PC1&is&subtracted&
before&PC2&is&calculated.&

Note:&&&
To&obtain&orthogonal&components,&p&must&be&replaced&with&weights&(w)&in&the&NIPALS&

algorithm.&&See&Geladi,&Anal&Chim&1986&for&more&detail.&&
Data&is&meanXcentered&for&PLSR.&Unit&variance&scaling&can&also&be&applied&if&the&

magnitudes&of&X&values&are&not&considered&important.&&
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Components in PLSR and PCA DifferComponents&in&PLSR&and&PCA&Differ&

Janes&Nat&Rev&MCB&2006&

Compare&2&models:&
1)&PCA&on&the&X&matrix&
2)&PLSR&of&the&X$and&Y&matrix&

X$ Y$

For&example,&AKT&has&a&larger&
loading&in&PC1&in&PLSR&than&in&PCA&
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Determining the Number of ComponentsDetermining&the&Number&of&Components&

The&op*mal&model&will&have&enough&components&to&accurately&fit&data&and&be&
predic*ve,&but&remain&simple&enough&for&interpreta*on.&&Addi*onally,&the&
model&is&subject&to&overXfiong&constraints.&

Three&metrics&are&used&to&evaluate&the&u*lity&of&adding&a&new&component&(a):&

R2X:&&sum&of&squares&for&the&varia*on&in&the&X&matrix&
& & &R2X&=&1&–&Σ(Xmodel,aXXobs)2&

" " " " "    Σ(Xobs2)&

R2Y:&&sum&of&squares&for&the&varia*on&in&the&Y&matrix&
& & &R2Y&=&1&–&Σ(Ymodel,aXYobs)2&
& & & & &&&&&&&&&Σ(Yobs2)&

Q2Y:&frac*on&of&the&total&varia*on&in&the&Y&matrix&that&can&be&predicted&
& & &Q2Y&=&[1.0&–&Π(PRESS/SS)a]&

PRESS&=&Predic*on&Error&Sum&of&Squares&
1)  Remove&an&individual&data&element&(i,k)&
2)  Fit&model&
3)  Predict&the&element&i,k&that&was&withheld&

&(observedi,k&–&predictedi,k)2&

4)  Repeat&un*l&each&element&has&been&withheld&once&and&only&once&
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Determining the Number of Components

R2X&
R2Y&
Q2Y&

Determining&the&Number&of&Components&

With&each&new&component,&evaluate&the&change&to&the&cumula*ve&Q2Y&
•  Q2Y&increases&significantly&(>0.05),&keep&the&component&and&evaluate&the&

effect&of&adding&another&component&
•  Q2Y&goes&down&or&has&minimal&change,&stop&model&at&the&previous&

component&&

Each&component&contributes&to&these&metrics&–&we&evaluate&those&contribu*ons&and&
the&cumula*ve&value&to&determine&if&adding&a&new&component&is&beneficial&(Q2Y&is&
priori*zed&in&this&evalua*on).&
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Variants of PLSR

Discriminant PLSR

Tensor PLSR
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Application

Sequential Application of Anticancer
Drugs Enhances Cell Death by
Rewiring Apoptotic Signaling Networks
Michael J. Lee,1 ,2 Albert S. Ye,2 ,3 Alexandra K. Gardino,1 ,2 Anne Margriet Heijink,1 Peter K. Sorger,2 ,4 Gavin MacBeath,2 ,4

and Michael B. Yaffe1 ,2 ,*
1Departments of Biology and Biological Engineering, David H. Koch Institute for Integrative Cancer Research
2Cell Decision Processes Center
Massachusetts Institute of Technology, Cambridge, MA 02139, USA
3Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
4Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
*Correspondence: myaffe@mit.edu
DOI 10.1016/j.cell.2012.03.031

SUMMARY

Crosstalk and complexity within signaling pathways
and their perturbation by oncogenes limit compo-
nent-by-component approaches to understanding
human disease. Network analysis of how normal
and oncogenic signaling can be rewired by drugs
may provide opportunities to target tumors with
high specificity and efficacy. Using targeted inhibi-
tion of oncogenic signaling pathways, combined
with DNA-damaging chemotherapy, we report that
time-staggered EGFR inhibition, but not simulta-
neous coadministration, dramatically sensitizes
a subset of triple-negative breast cancer cells to gen-
otoxic drugs. Systems-level analysis—using high-
density time-dependent measurements of signaling
networks, gene expression profiles, and cell pheno-
typic responses in combination with mathematical
modeling—revealed an approach for altering the
intrinsic state of the cell through dynamic rewiring
of oncogenic signaling pathways. This process
converts these cells to a less tumorigenic state that
is more susceptible to DNA damage-induced cell
death by reactivation of an extrinsic apoptotic
pathway whose function is suppressed in the onco-
gene-addicted state.

INTRODUCTION

Standard therapies for the treatment of human malignancies
typically involve the use of chemotherapy or radiation therapy,
which function by damaging DNA in both normal and cancerous
cells (Lichter and Lawrence, 1995). Our growing understanding
of this process suggests that the DNA damage response (DDR)
functions as part of a complex network controlling many cellular
functions, including cell cycle, DNA repair, and various forms of

cell death (Harper and Elledge, 2007). The DDR is highly inter-
connected with other progrowth and prodeath signaling
networks, which function together to control cell fate in
a nonlinear fashion due to multiple levels of feedback and cross-
talk. Thus, it is difficult to predict a priori how multiple, often
conflicting signals will be processed by the cell, particularly by
malignant cells in which regulatory networks often exist in atyp-
ical forms. Predicting the efficacy of treatment and the optimal
design of combination therapy will require a detailed under-
standing of how the DDR and other molecular signals are inte-
grated and processed, how processing is altered by genetic
perturbations commonly found in tumors, and how networks
can be ‘‘rewired’’ using drugs individually and in combination
(Sachs et al., 2005).
In many forms of breast cancer, aberrant hormonal and/or

growth factor signaling play key roles in both tumor induction
and resistance to treatment (Hanahan and Weinberg, 2000).
Moreover, the identification of molecular drivers in specific
breast cancer subtypes has led to the development of more effi-
cacious forms of targeted therapy (Schechter et al., 1984;
Slamon et al., 1987). In spite of these advances, there are
currently no targeted therapies and no established molecular
etiologies for triple-negative breast cancers (TNBC), which are
a heterogeneous mix of breast cancers defined only by the
absence of estrogen receptor (ER) or progesterone receptor
(PR) expression and lack of amplification of the HER2 oncogene
(Perou et al., 2000). Patients with TNBCs have shorter relapse-
free survival and a worse overall prognosis than other breast
cancer patients; however, they tend to respond, at least initially,
to genotoxic chemotherapy (Dent et al., 2007). Triple-negative
patients generally do well if pathologic complete response is
achieved following chemotherapy.When residual disease exists,
however, the prognosis is typically worse than for other breast
cancer subtypes (Abeloff et al., 2008). Thus, identifying new
strategies to enhance the initial chemosensitivity of TNBC cells
may have substantial therapeutic benefit. Wewondered whether
a systems biology approach, focused on examining and manip-
ulating the interface between growth factor signaling pathways
and DNA damage signaling pathways in tumor cells, could

780 Cell 149, 780–794, May 11, 2012 ª2012 Elsevier Inc.
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Application

A

C D

E

H I
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Figure 1. A Screen for Novel Combination Treatment Reveals Dosing Schedule-Dependent Efficacy for Killing TNBC Cells
(A) Schematic of combinations tested. Seven genotoxic drugs and eight targeted signaling inhibitors were tested in pair-wise combinations, varying dose, order of

presentation, dose duration, and dosing schedule.

(B) Apoptosis in BT-20 cells. Cleaved-caspase 3/cleaved-PARP double-positive cells were quantified using flow cytometry (bottom). In cells treated with DMSO,

erlotinib (ERL), or doxorubicin (DOX), apoptosis measurements were performed 8 hr after drug exposure or at the indicated times. D/E, ERL/DOX, and DOX/

ERL refer to DOX and ERL added at the same time, ERL given at the indicated times before DOX, and DOX given at the indicated times before ERL, respectively.

For each, apoptotic measurements were made 8 hr after the addition of DOX. Erlotinib and doxorubicin were used at 10 mM. Mean values ±SD of three inde-

pendent experiments, each performed in duplicate, are shown (top).

(C–F) Apoptosis in different subtypes of breast cancer. Apoptosis was measured as in (B). (D and E) E/D and D/E refer to DOX and ERL added at the same

time, ERL given 24 hr before DOX, and DOX given 4 hr before ERL, respectively. Data are mean values ±SD of three independent experiments.

(G) Dose-response profiles of erlotinib/doxorubicin drug combinations. Apoptosis was measured as in (B). Drugs were added at a 1:1 ratio, and combination

index (CI) was calculated according to the Chou-Talalay method.

(H) Knockdown of EGFR in BT-20 cells measured 48 hr after addition of the indicated siRNA by immunoblotting (left). EGFR expression relative to ‘‘no RNA’’

control is quantified on right.

(I) Apoptosis in BT-20 cells ± EGFR knockdown measured as in (B). Scrambled RNAi shown as control. Data shown are the mean ±SD of both siRNAs, each

performed in biological duplicate.

See also Figure S1.

782 Cell 149, 780–794, May 11, 2012 ª2012 Elsevier Inc.
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Application

A B C D

E F G H

I J K

Figure 2. Prolonged Treatment with Erlotinib Does Not Change Cell-Cycle Profile, Doxorubicin Influx/Efflux, or the Level of DNA Damage
(A–D) Quantitative cell-cycle analysis. DNA content and the percentage of mitotic cells were measured by FACS. (A) Example FACS plots from untreated BT-20

cells. (B–D) Cell-cycle stage quantified from three experiments, each performed in duplicate. Cells were treated as in Figure 1, and data were collected at 6, 8, 12,

24, and 48 hr after DOX treatment. 8 hr data shown for each cell type.

(E–H) Doxorubicin retention measured by flow cytometry. (E) Sample time course of BT-20 cells treated with 10 mM DOX for the indicated times. (F–H) Cells

treatedwith doxorubicin or pretreatedwith erlotinib for 24 hr prior to DOX (E/D). Cells were collected at 1, 4, or 8 hr after DOX exposure as indicated, and internal

doxorubicin fluorescence was measured.

(I and J) Quantitative microscopy of the early DNA double-stranded break response. (I) Example image of cells treated with DOX for 1 hr and stained for gH2AX,

53BP1, or nuclear content (DAPI). (J) Integrated intensity per nucleus of gH2AX and 53BP1 foci was measured in BT-20 cells after the indicated treatments and

times. Mean values ± SD from triplicate experiments shown.

(K) Western blot analysis of gH2AX in BT-20 cells. b-actin shown as a loading control.

See also Figure S2.
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A B

C

D

E

Figure 4. A Systems-Level Signal-Response Data Set Collected Using a Variety of High-Throughput Techniques
(A–D) (A) The complete signaling data set for three different breast cancer subtypes following combined EGFR inhibition and genotoxic chemotherapy treatments

as in Figure 1. Each box represents an 8 or 12 point time course of biological triplicate experiments. Time course plots are colored by response profile, with early

sustained increases in signal colored green, late sustained increases colored red, and transient increases colored yellow. Decreases in signal are colored blue.

Signals that are not significantly changed by treatment are shaded gray to black with darkness reflecting signal strength. Numbers to the right of each plot report

fold change across all conditions and/or cells. (B) Sample detailed signaling time course from (A), highlighted by dashed box and asterisk, showing p-ERK

activation in BT-20 cells. Mean values ±SD of three experiments are shown. (C) Forty-eight-sample western blots analyzed using two-color infrared detection.

Each gel contained an antibody-specific positive control (P) for blot-to-blot normalization. The example shown is one of three gels for total p53 in MCF7 cells (p53

in green; b-actin in red). (D) Reverse-phase protein lysate microarrays were used to analyze targets of interest when array-compatible antibodies were available.

The slide shown contains !2,500 lysate spots (experimental and technical triplicates of all of our experimental samples, and control samples used for antibody

calibration), probed for phospho-S6.

(E) The complete cellular response data set, colored as in (A).

See also Figure S4 and Table S1.
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Application

Figure 5. A PLS Model Accurately Predicts Phenotypic Responses from Time-Resolved Molecular Signals
(A) Principal components analysis of covariation between signals. Scores plot represents an aggregatemeasure of the signaling response for each cell type under

each treatment condition at a specified time, as indicated by the colors and symbols in the legend.

(B and C) Scores and loadings for a PLS model. (B) Scores calculated and plotted as in (A), except the principal components now reflect covariation between

signals and responses. (C) PLS loadings plotted for specific signals and responses projected into principal component space.

(D–I) BT-20 cell line-specific model calibration. (D) R2, Q2, and RMSE for BT-20 models built with increasing numbers of principal components. (E and F) Scores

and loadings plots, respectively, for a two-component model of BT-20 cells. (G–I) Apoptosis as measured by flow cytometry or as predicted by our model using

jack-knife cross-validation. R2 reports model fit, and Q2 reports model prediction accuracy. (G) Final refined model of apoptosis in BT-20. (H) BT-20 model minus

targets identified as DEGs in microarray analysis. (I) Model using only the top four signals: c-caspase-8, c-caspase-6, p-DAPK1, and pH2AX.

See also Figure S5.
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A
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Figure 6. Enhanced Sensitivity to Doxorubicin Is Mediated by Caspase-8 Activation
(A) VIP scores for predicting apoptosis plotted for each cell line-specific PLS model. VIP score >1 indicates important x variables that predict y responses,

whereas signals with VIP scores <0.5 indicate unimportant x variables.

(B and C) Model-generated predictions of apoptosis with (blue) or without (red) caspase-8 activation 8 hr after the indicated treatments in BT-20 (B) and 453 (C).

(D and E) Western blot verifying caspase-8 knockdown in BT-20 (D) and 453 (E).

(F and G) Measured apoptosis 8 hr after the indicated treatment in cells expressing control RNA or caspase-8 siRNA. (F) BT-20. (G) 453. In both (F) and (G),

apoptotic values represent mean response ±SD from both siRNAs, each in duplicate.

See also Figure S6.
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790 Cell 149, 780–794, May 11, 2012 ª2012 Elsevier Inc.
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Practical Notes

PCR

I sklearn does not implement PCR directly
I Can be applied by chaining sklearn.decomposition.PCA

and sklearn.linear_model.LinearRegression
I See: https://scikit-learn.org/stable/auto_examples/plot_

digits_pipe.html

PLSR

I sklearn.cross_decomposition.PLSRegression

I Uses M.fit(X, Y) to train
I Can use M.predict(X) to get new predictions
I PLSRegression(n_components=3) to set number of 

components on setup
I Or M.n_components = 3 after setup

https://scikit-learn.org/stable/modules/generated/sklearn.cross_

decomposition.PLSRegression.html

https://scikit-learn.org/stable/auto_examples/plot_digits_pipe.html
https://scikit-learn.org/stable/auto_examples/plot_digits_pipe.html
https://scikit-learn.org/stable/modules/generated/sklearn.cross_decomposition.PLSRegression.html
https://scikit-learn.org/stable/modules/generated/sklearn.cross_decomposition.PLSRegression.html
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Summary

PLSR

I Maximizes the covariance
I Takes into account both the dependent (Y) and independent 

(X) data

PCR

I Uses PCA as initial decomp. step, then is just normal linear 

regression
I Maximizes the variance explained of the independent (X) data
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Summary

Interpreting PLSR

I R2X, R2Y , Q2Y  (maximum value of 1)
I Using Q2Y to determine number of components 

Scores/loadings
I DModY (lower = better predicton)
I VIP (>1 indicates important)
I Ultimately, these metrics are seconary to whether a 

model works upon crossvalidation
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Summary

I PLSR is amazingly well at prediction
I This is incredibly powerful

I Interpreting WHY PLSR predicts something can be very 

challenging


