
1 / 35

Support Vector Machines

Aaron Meyer



2 / 35

Outline
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Adapted from slides by Martin Law.
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History Of SVM

I SVM is related to statistical learning theory
I First introduced in 1992
I Became popular because of its success in handwritten digit 

recognition
I 1.1% test error rate for SVM. Same error as a perceptron model.
I Also used in very first self-driving cars
I Later bested by deep learning methods

I Note: the meaning of “kernel” is different from other methods
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What Is A Good Decision Boundary?

Consider a two-class, linearly separable classification problem

I Many decision boundaries!
I Are all decision boundaries equally good?
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Examples Of Bad Decision Boundaries
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Large-Margin Decision Boundary

I The decision boundary should be as far away from the data of 

both classes as possible
I We should maximize the margin, m = 2/ ‖w‖
I Distance between the origin and the line wtx = k is k/ ‖w‖
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Finding The Decision Boundary

I Let {x1, . . . , xn} be our data set and let yi ∈ {1,−1} be the 

class label of xi
I The decision boundary should classify all points correctly

I yi
(
wT xi + b

)
≥ 1, ∀i

I The decision boundary can be found by solving the following 

constrained optimization problem:
I Minimize 12 ‖w‖2
I subject to yi

(
wT xi + b

)
≥ 1

I This is a constrained optimization problem
I Quick methods to find the global optimum by quadratic 

programming
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The Quadratic Programming Problem

Many approaches have been proposed

I Most are “interior-point” methods
I Start with an initial solution that can violate the constraints
I Improve this solution by optimizing the objective function 

and/or reducing the amount of constraint violation

I For SVM, sequential minimal optimization (SMO) seems to be 

the most popular
I A QP with two variables is trivial to solve
I Each iteration of SMO picks a pair of (αi, αj) and solve the QP 

with these two variables; repeat until convergence

I In practice, we can just regard the QP solver as a “black-box” 

without bothering how it works
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Characteristics Of The Solution

I Many of the αi are zero
I w is a linear combination of a small number of data points
I This “sparse” representation can be viewed as data compression 

as in the construction of knn classifier

I xi with non-zero αi are called support vectors (SV)
I The decision boundary is determined only by the SV
I Let tj(j = 1, . . . , s) be the indices of the s support vectors
I We can write w =

∑s
j=1 αtjytjxtj

I For testing with a new data z

I Compute wT z + b =
∑s

j=1 αtjytj

(
xT
tjz

)
+ b

I Classify z as class 1 if the sum is positive, and class 2 otherwise
I Note: w need not be formed explicitly
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A Geometrical Interpretation
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Non-Linearly Separable Problems

I We allow “error” ξi in classification; it is based on the output of 

the discriminant function wTx + b
I ξi approximates the number of misclassified samples
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Soft Margin Hyperplane

I If we minimize 
∑

i ξi, ξi can be computed by
I (wT xi + b) ≥ 1− ξi yi = 1
I (wT xi + b) ≤ −1 + ξi yi = −1
I ξi ≥ 0
I ξi are “slack variables” in optimization
I Note that ξi = 0 if there is no error for xi

I ξi is an upper bound of the number of errors

I We want to minimize:
I 1

2 ‖w‖2 + C
∑n

i=1 ξi
I C: tradeoff parameter between error and margin

I The optimization problem becomes:
I Minimize 12 ‖w‖2 + C

∑n
i=1 ξi

I subject to yi(wT xi + b) ≥ 1− ξi, ξi ≥ 0
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The Optimization Problem

I The dual of this new constrained optimization problem is:
I max. W (α) =

∑n
i=1 αi − 1

2

∑n
i=1,j=1 αiαjyiyjxT

i xj

I subject to C ≥ αi ≥ 0,
∑n

i=1 αiyi = 0

I w is recovered as w =
∑s

j=1 αtjytjxtj
I This is very similar to the optimization problem in the linear 

separable case, except that there is an upper bound C on αi

now
I Once again, a QP solver can be used to find αi
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Extension To Non-linear Decision Boundary

I So far, we have only considered large-margin classifier with a 

linear decision boundary
I How to generalize it to become nonlinear?
I Key idea: transform xi to a higher dimensional space to “make 

life easier”
I Input space: the space the point xi are located
I Feature space: the space of φ(xi) after transformation

I Why transform?
I Linear operation in the feature space is equivalent to non-linear 

operation in input space
I Classification can become easier with a proper transformation.
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Transforming The Data

I Computation in the feature space can be costly because it is 

high dimensional
I The feature space is typically infinite-dimensional!

I The kernel trick comes to rescue
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The Kernel Trick

I Recall the SVM optimization problem

I The data points only appear as the inner product
I max. W (α) =

∑n
i=1 αi − 1

2

∑n
i=1,j=1 αiαjyiyjxT

i xj

I subject to C ≥ αi ≥ 0,
∑n

i=1 αiyi = 0

I As long as we can calculate the inner product in the feature 

space, we do not need the mapping explicitly

I Many common geometric operations (angles, distances) can be 

expressed by inner products

I Define the kernel function K by:

K(xi, xj) = φ (xi)
T φ (xj)
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Kernel Functions

I In practical use of SVM, the user specifies the kernel function; 

the transformation φ(.) is not explicitly stated
I Given a kernel function K(xi, xj), the transformation φ(.) is 

given by its eigenfunctions (a concept in functional analysis)
I Eigenfunctions can be difficult to construct explicitly
I This is why people only specify the kernel function without 

worrying about the exact transformation

I Another view: kernel function, being an inner product, is really 

a similarity measure between the objects
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Examples of Kernel Functions

I Polynomial kernel with degree d

I K(x, y) =
(
xT y + 1

)d
I Radial basis function kernel with width σ

I K(x, y) = exp(−‖x − y‖2 /(2σ2))
I Closely related to radial basis function neural networks
I The feature space is infinite-dimensional

I Sigmoid with parameter κ and θ
I K(x, y) = tanh(κxT y + θ)
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Modification Due to Kernel Function

I Change all inner products to kernel functions
I For training:

I Original: max. W (α) =
∑n

i=1 αi − 1
2

∑n
i=1,j=1 αiαjyiyjxT

i xj

I With kernel function: max. 

W (α) =
∑n

i=1 αi − 1
2

∑n
i=1,j=1 αiαjyiyjxT

i xj

I Both: subject to C ≥ αi ≥ 0,
∑n

i=1 αiyi = 0



20 / 35

Modification Due to Kernel Function

I For testing, the new data z is classified as class 1 if f ≥ 0, and 

class 2 if f < 0
I Original:

I w =
∑s

j=1 αtjytjxtj

I f = wT z + b =
∑s

j=1 αtjytj

(
xT
tjz

)
+ b

I With kernel function:
I w =

∑s
j=1 αtjytjφ

(
xtj

)
I f = 〈w, φ (z)〉+ b =

∑s
j=1 αtjytjK

(
xT
tj , z

)
+ b
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More on Kernel Functions

I Since the training of SVM only requires the value of K(xi, xj), 
there is no restriction of the form of xi and xj

I xi can be a sequence or a tree, instead of a feature vector

I K(xi, xj) is just a similarity measure comparing xi and xj

I For a test object z, the discrimination function essentially is a 

weighted sum of the similarity between z and a pre-selected set 

of objects (the support vectors):
I f(z) =

∑
xi∈S αiyiK(z, xi) + b

I S: the set of support vectors
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Example of Non-Linear Transformation
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Justification of SVM

I Large margin classifier
I Ridge regression: the term 12 ‖w‖

2 “shrinks” the parameters 

towards zero to avoid overfitting
I The term the term 12 ‖w‖

2 can also be viewed as imposing a 

weight-decay prior on the weight vector
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Choosing the Kernel Function

I Probably the most tricky part of using SVM
I The kernel function is important because it creates the kernel 

matrix, which summarizes all the data
I In practice, a low degree polynomial kernel or RBF kernel with 

a reasonable width is a good initial try
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Other Aspects of SVM

I How to use SVM for multi-class classification?
I One can change the QP formulation to become multi-class
I More often, multiple binary classifiers are combined
I One can train multiple one-versus-all classifiers, or combine 

multiple pairwise classifiers “intelligently”

I How to interpret the SVM discriminant function value as 

probability?
I By performing logistic regression on the SVM output of a set of 

data (validation set) that is not used for training
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Summary: Steps For Classification

I Prepare the pattern matrix
I Select the kernel function to use
I Select the parameter of the kernel function and the value of C

I You can use the values suggested by the SVM software, or you 

can set apart a validation set to determine the values of the 

parameter

I Execute the training algorithm and obtain the αi

I Unseen data can be classified using the αi and the support 

vectors
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Strengths And Weaknesses Of SVM

I Strengths
I Training is relatively easy

I No local optimal, unlike in neural networks

I It scales relatively well to high dimensional data
I Tradeoff between classifier complexity and error can be 

controlled explicitly
I Non-traditional data like strings and trees can be used as input 

to SVM, instead of feature vectors

I Weaknesses
I Need to choose a “good” kernel function.
I Not generative
I Difficult to interpret
I Need fully labelled data
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Other Types Of Kernel Methods

I A lesson learnt in SVM: a linear algorithm in the feature space 

is equivalent to a non-linear algorithm in the input space
I Standard linear algorithms can be generalized to its non-linear 

version by going to the feature space
I Kernel principal component analysis, kernel independent 

component analysis, kernel canonical correlation analysis, kernel 

k-means, 1-class SVM are some examples
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Multi-Class Classification

I SVM is basically a two-class classifier
I One can change the QP formulation to allow multi-class 

classification
I More commonly, the data set is divided into two parts 

“intelligently” in different ways and a separate SVM is trained 

for each way of division
I Multi-class classification is done by combining the output of all 

the SVM classifiers
I Majority rule
I Error correcting code
I Directed acyclic graph
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Application - Circulating Tumor Cells

1Scientific RepoRts | 6:37863 | DOI: 10.1038/srep37863

www.nature.com/scientificreports

Multiparameter mechanical and 
morphometric screening of cells
Mahdokht Masaeli1,2,3, Dewal Gupta1, Sean O’Byrne1,2, Henry T. K. Tse1,2,4, 
Daniel R. Gossett1,2,4, Peter Tseng1,2, Andrew S. Utada1,2, Hea-Jin Jung5, Stephen Young5,6,7, 
Amander T. Clark8,9 & Dino Di Carlo1,2

We introduce a label-free method to rapidly phenotype and classify cells purely based on physical 
properties. We extract 15 biophysical parameters from cells as they deform in a microfluidic stretching 
flow field via high-speed microscopy and apply machine-learning approaches to discriminate different 
cell types and states. When employing the full 15 dimensional dataset, the technique robustly classifies 
individual cells based on their pluripotency, with accuracy above 95%. Rheological and morphological 
properties of cells while deforming were critical for this classification. We also show the application 
of this method in accurate classifying cells based on their viability, drug screening and detecting 
populations of malignant cells in mixed samples. We show that some of the extracted parameters are 
not linearly independent, and in fact we reach maximum classification accuracy by using only a subset 
of parameters. However, the informative subsets could vary depending on cell types in the sample. This 
work shows the utility of an assay purely based on intrinsic biophysical properties of cells to identify 
changes in cell state. In addition to a label-free alternative to flow cytometry in certain applications, this 
work, also can provide novel intracellular metrics that would not be feasible with labeled approaches 
(i.e. flow cytometry).

Intrinsic physical properties of cells that reflect underlying molecular structure are indicators of cell state asso-
ciated with a number of processes including cancer progression, stem cell differentiation, and drug response1–3. 
Nuclear and cytoplasmic structure or morphology have been one of the main tools for histological detection 
and classification of cancer. These features include chromatin texture, nuclear shape and cytoplasmic features 
such as shape and cytoplasmic clearing. Morphology is indicative of cell fate, differentiation, and self-renewal 
capacity. In addition to the expression of certain cell surface markers, cell morphology has been one of the major 
parameters for validation of pluripotency of human embryonic stem cell (hESC) and induced pluripotent stem 
cell (iPSC)4–6. Recent studies have identified morphological properties that distinguish different subpopulations 
in highly heterogeneous cultures of mesenchymal stem cells7. Morphology-based assays have also been successful 
in discovery of unique drugs that act on mammalian cells, filamentous fungi, and yeasts8. Observation of pharma-
cological class–dependent morphological changes in cells has been considered as a complementary strategy for 
drug discovery6. Recent work using morphological screening tools have linked morphology to activity of a subset 
of genes9,10. While morphometric measurements provide information on visible cell structures without external 
probing, internal and optically transparent architectural features can be probed by measuring cell deformation 
under an applied stress. Cell mechanical stiffness has recently emerged as an indicator of various changes in cells 
state11 including cancer cell function, motility, and invasion capacity12–14. One study found human metastatic 
cancer cells to be more than 70% softer than neighboring benign reactive mesothelial cells1. Embryonic stem 
cells have also been found to be more deformable than differentiated cells using atomic force microscopy and 
micropipette aspiration15,16. Assaying both external and internal architectural properties of cells through the com-
binations of morphological and mechanical signatures is expected to provide label-free and low cost biomarkers 
of cell type or state.
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Los Angeles, CA, USA. 3Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, 
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Angeles, CA, USA. 6Department of Medicine, University of California, Los Angeles, USA. 7Department of Human 
Genetics, University of California, Los Angeles, CA, USA. 8Department of Molecular Cell and Developmental Biology, 
University of California, Los Angeles, CA, USA. The Eli and Edythe Broad Center of Regenerative Medicine and Stem 
Cell Research, University of California, Los Angeles, CA, USA. Correspondence and requests for materials should be 
addressed to M.M. (email: http://m.masaeli@gmail.com)
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CTCs Are A Useful Resource for Cancer Analysis
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Application - Separating CTCs From Other Blood Cells

Figure 1. Comprehensive high-throughput quantification of cell physical properties. (a) Single cells in 
suspension are injected into a microfluidic device and are imaged while passing through a hydrodynamic 
stretching region. Several parameters are extracted from the image series captured from each cell. (b) The 
percent changes in median values of populations of hESCs (blue) and 14 day differentiated hESCs (green) are 
plotted for 15 parameters extracted from the image series. Histograms of > 1000 single cells per condition are 
shown for select parameters, indicating substantial overlap in population characteristics when only considering 
a single parameter. (D3: Maximum deformability at the junction, A: Initial cell size, T1: Total deformation time, 
M4: Morphology metric extracted during deformation defined by the number of intersections of the trace and 
the moving average or the cell border).
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Application - Separating CTCs From Other Blood Cells

Figure 5. (a) Density profiles of Jurkat cells after 1–3 days of treatment with TSA (1, 2 µ M) show that at higher 
dosages and treatment times, a portion of the population becomes stiff and small. (b) The profile of spiked 
and pure samples of live and fixed Jurkat cells. (c) Data shows high correlation between predicted viability and 
viability calculated using a standard cytotoxicity assay. (d) 2D profiles for healthy leukocytes (WBC), MCF7, 
and HL60 cells. (e) Three-dimensional profiles of diameter (A), deformability (D3), and deformation rate (T2) 
for three differently mixed samples of WBCs (cyan), HL60s (red), and MCF7s (blue). Classification using all 15 
parameters led to <  5% error in classification of three differently mixed samples.
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Implementation

sklearn has implementations for a variety of SVM methods:

I sklearn.svm.SVC

I Performs single or multi-class classification
I Multi-class is through one-vs-one scheme

I Multiple kernels available
I linear: 〈x, x′〉
I polynomial: (γ〈x, x′〉+ r)d

I rbf: exp(−γ‖x− x′‖2)
I sigmoid: tanh(γ〈x, x′〉+ r)

I Alternative implementations
I sklearn.svm.NuSVC

I Additionally provides parameter to control number of support 

parameters

I sklearn.svm.LinearSVC

I Only support for linear kernel, with better scaling/options
I For example can provide l1 or l2 regularization
I Scales better for many samples
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Further Reading

I MIT 6.034: Support Vector Machines
I Computer Age Statistical Inference: Chapter 19
I sklearn: Support Vector Machines
I Linear Digressions Podcast

I Maximal Margin Classifiers
I The Kernel Trick and Support Vector Machines

https://web.mit.edu/6.034/wwwbob/svm.pdf
https://web.stanford.edu/~hastie/CASI_files/PDF/casi.pdf
https://scikit-learn.org/stable/modules/svm.html
https://lineardigressions.com/episodes/2017/12/3/maximal-margin-classifiers
https://lineardigressions.com/episodes/2017/12/10/the-kernel-trick-and-support-vector-machines

